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Abstract: Control of a bio-reactor is a complex task due to inherent non-linearities and
unavailability of measurements of the quality variables at regular sampling intervals. In this
work, it proposed to identify Wiener-Hammerstein type fast-rate time series models for the
quality variables directly from the irregularly sampled multi-rate input-output data. The
identified models are further used to develop a multi-rate nonlinear predictive controller. The
efficacy of the proposed modelling and control scheme is demonstrated by conducting simulation
studies on a continuous fermenter system that exhibits input multiplicity and gain reversal in
the desired operating region.
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1. INTRODUCTION

Control of a biological processes is a complex task due
to inherent non-linearities in the dynamic behaviour, un-
certainties arising due to changes in the behaviour of the
biomass and changes in the conditions. These difficulties
are compounded due to the fact that many variables of
interest, such as bio-mass concentration or certain product
concentrations, are not measurable on-line. Even if these
measurements are made available for feedback control
through lab assays, these measurements are likely to be
available at irregular sampling intervals. From the view
point of control, such systems in which either measure-
ments and / or manipulated inputs are available at regu-
lar / irregular but different sampling intervals are called
multi-rate sampled data systems. With advances in digital
control hardware, it is now possible to develop special
approaches to deal with these multi-rate sampled data
systems (Gudi et al. [1997] ).

From the view point of control of bio-reactors, a sub-
class of multi-rate systems, in which measurements are
available at irregular sampling rate but the manipulated
input moves are made at a regular and fast sampling rate,
are of particular interest. To achieve tight control of such
processes, it is important generate reliable estimates of
the monitored output at a fast rate and use these esti-
mates in developing a control law. If a reasonably accurate
unstructured mechanistic model is available for the bio-
process under consideration, then this can be achieved
by constructing inter-sample estimates of the unmeasured
variables using any standard state estimation technique
such as extended Kalman filtering (EKF) or moving hori-
zon estimation (MHE). However, developing a reliable
dynamic model from the first principles can prove to be a
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difficult and time consuming task. Recently, Srinivasarao
et al. [2007] have proposed to use nonlinear fast-rate time
series models, which are identified from multi-rate input-
output data, for improving control of multi-rate sampled
data systems. This appears to be an attractive option as
the time required for model development and, in turn, the
cost of the model development exercise, is significantly less
when compared with a mechanistic model.

If it is desired to develop a nonlinear time series model
for a process, then the first step towards model building
is selection of appropriate model structure. Block oriented
models, such as Wiener or Hammerstein model, are prob-
ably the simplest and most popular form of nonlinear time
series models used in the process control literature(Pearson
and Ogunnaike [1997]). These models consist of a lin-
ear dynamic component and a static nonlinear compo-
nent, which appears either at input of the linear dynamic
component (Hammerstein structure) or at the output of
the linear dynamic component (Wiener structure). Srini-
vasarao et al. [2007] have explored the use of only the
Wiener type models in the multi-rate scenario. The linear
dynamic component of these models is parametrized using
orthonormal bass filters (OBF). In the present work, it
is proposed to extend this approach to identify Hammer-
stein and Wiener-Hammerstein models, in which the static
nonlinear blocks appear at the input as well as the output
ends of the linear dynamic component, from the multi-
rate input-output data. When estimates of the irregularly
sampled variable become available at the fast rate, the
problem that needs to be addressed next is the choice of
appropriate control strategy. Over the last two decades,
nonlinear model predictive control (NMPC) has emerged
as the prime tool to handle the control problems associ-
ated with industrial systems exhibiting highly nonlinear
dynamics(Qin and Badgwell [2003]). Thus, we proceed
to use the identified Hammerstein / Wiener-Hammerstein
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models to develop a nonlinear predictive controller that
can provide offset free closed loop behaviour.

This paper is organized in four sections. In the nest section
the proposed nonlinear block oriented model structure
and model parameter identification from an irregularly
sampled multi-rate data are presented. In Section 3, an
NMPC scheme is developed based on the identified model.
Simulation studies on a continuous fermenter system are
presented next.

2. DEVELOPMENT OF FAST-RATE BLOCK
ORIENTED MODEL

Consider a continuously operated bio-process governed by
a generalised unstructured model of the form

dz

dt
=F [z,uT (t),d(t), θ(t)] (1)

y(t) =G [z, θ(t)] + υy(t) (2)

where z ∈ Rs represents state vector, uT ∈ Rm represents
the true value of manipulated inputs, d ∈ Rd represents
unmeasured disturbances, y ∈ Rr represents the vector of
measured outputs corrupted with measurement noise υy(t)
and θ ∈ Rν represents parameter vector. It is assumed that

• u ∈ Rm represents known (or computed) value of
manipulated input which are related to the true
values as follows

uT (t) = u(t) + υu(t) (3)

where υu∈Rm denotes an unknown input distur-
bance, which is assumed to be a zero mean stationary
signal.

• Variations of signals d(t) and process parameters
θ(t) around their mean values, denoted as υd(t) and
υp(t), respectively, can be represented as zero mean
stationary stochastic processes and

d(t) = d+ υd(t) (4)

θ(t) = θ + υd(t) (5)

where d and θ represent mean values, which remain
unaltered through out the identification process, of
these signals. But these can can change abruptly dur-
ing operation of the plant but with a low frequency.

• the process has a fading memory or in other words
does not contain any integrating/ unstable modes.

• the measured outputs are available irregularly such
that the sampling intervals are integer multiple of the
shortest sampling time, T.

It is further assumed that the plant is perturbed delib-
erately by injecting multi-level perturbations in the ma-
nipulated inputs and the input-output data is collected.
The actuators are manipulated at discrete time instants
{tk = kT : k = 0, 1, 2, ...} where sampling instants {tk} are
called as minor sampling instants. The measurements
of ith output are assumed to be available at a slower
rate only at sampling instants given by the sub-sequence
{ki0, ki1, ki2,...}, called as major sampling instants, such
that the difference kil − kil−1 = qil (≥ 1) where qil is
an integer. For regularly sampled multi-rate system qil is
constant and independent of l, else, the system is an ir-
regularly sampled system. Thus, the information available

from the plant is the sampled sequence of input at fast
rate, i.e. set UN= {u(k) : k = 0, 1, 2, .....N} and and the
corresponding irregularly sampled multi-rate output data
sets

Yi,N = {yi(kl) : ki,l = ki,1, ki,2, ..., ki,q; ki,q ≤ N}

for i = 1, 2, ..., r collected from the plant where kil
represents major sampling instants. It may be noted
that, while generating data set for model identification,
measurement noises and plant disturbance are introduced
through the vectors d and θ drift as given by equations
(4) and (5), respectively.

2.1 Development of Fast Rate Block Oriented Models

It is desired to develop multiple (r) input single output
(MISO) model for all the outputs of interest. Thus, to
simplify the notation, sub-script i denoting the i’th output
is dropped in this section. Given input-output data set
ΣN =(YN ,UN ) , the identification problem can be formu-
lated as identification of a non-linear operator Ξ[·]

y(kl) = Ξ [φ(kl), θ] + e(kl) (6)

in such a way that, a suitable norm of model residuals
{e(kl) : ∀kl; kl = k0, k1, k2...kn} is minimized with respect
to parameter vector θ. The regressor vector φ [·] can either
be chosen as function of past known inputs alone (i.e.
nonlinear output error or NOE model structure) or as a
function of past inputs and the past output measurements
(i.e. nonlinear ARX or NARX model structure) (Sjoberg
et al. [1995]). The models with NOE structure are known
to have excellent long range prediction ability and are
ideal candidates for developing nonlinear predictive con-
trol schemes. Thus, we restrict ourselves to the develop-
ment of NOE models from ΣN .

Given ΣN Srinivasarao et al. [2007] have proposed to
develop a Wiener type fast-rate NOE model of the form

x(k + 1) =Φx(k) + Γu(k) (7)

y(kl) = Ω [x(kl)] + v(kl) (8)

Here, x(k) ∈ Rn represents the state vector updated at
the fast rate and Ω [·] represents a static map relating
the states with the output. It may be noted that the
measurement model (8) holds only at the major sampling
instants. The matrices (Φ,Γ) appearing in the linear
dynamic component are parametrized using orthonormal
basis filters (OBF), which represent an orthonormal basis
for the set of strictly proper stable transfer functions
(denoted asH2). Ninness and Gustafson [1997] have shown
that a complete orthogonal set in H2 can be constructed
as follows

Fk(z, ξ) =

√
(1− |ξk|2)
(z − ξk)

k−1∏
j=1

(1− ξ∗kz)

(z − ξj)
(9)

where {ξk : k = 1, 2, ...} is an arbitrary sequence of poles
inside the unit circle appearing in complex conjugate
pairs. The nonlinear state output map Ω[·] : Rn →
R was chosen to be simple multi-dimensional quadratic
polynomial functions of the form(Srinivasarao et al. [2007])

Ω [·] = Cx(kl)+x(kl)
T Dx(kl) (10)
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This model is referred to as Wiener-OBF model in the rest
of the text.

In the present work, we propose two modifications in the
above structure

• OBF-Hammerstein model: One possibility is to
introduce static non-linearity at input side in equa-
tion (7) as follows

x(k + 1) =Φx(k) + ΓΛ [u(k)] (11)

Λ(k) =
[
f (1) [u(k)] f (2) [u(k)] ... f (M) [u(k)]

]T
(12)

Here, f (j) [u(k)] : Rm → R for j = 1, 2, ...,M rep-
resent some chosen continuous nonlinear functions.
For example, a simplest choice can be a polynomial
functions of the form

f (i) [u(k)] = ui(k) (13)

f (m+l) [u(k)] = ui(k)uj(k) (14)

for i = 1, 2, ...m, j = i , 2 , ...m

l = 1 , 2 , ...,m(m + 1 )/2

In fact, f (i) [u(k)] can be viewed as pseudo-linear in-
put entering the state dynamics. The state to output
map in this case is chosen to be linear as follows

Ω [x(kl)] = Cx(kl) (15)

In the literature on the development of Hammerstein
models, the input non-linearity is often modelled as

Λ [u(k)] =
M∑
i=1

αif
(i) [u(k)]

where the parameters {αi} are either estimated apri-
ori based on some other considerations (Ljung [1999])
or as a as part of the model parameter estimation
exercise (Gomez and Baeyens [2004]). The parameter
estimation problem can become complex in the later
case since the model residuals are complex functions
of these parameters. On the other hand, the major
advantage of formulating the Hammerstein model
in this manner is that the parameter identification
problem is reduced to estimating matrices (Φ,Γ) and
estimation of elements of vector C, which is a liner
parameter estimation problem.

• Wiener-OBF-Hammerstein model: This model
is obtained by combining the OBF-Hammerstein
model with Wiener-OBF model as follows

x(k +1) = Φx(k) + ΓΛ [u(k)]

y(kl) = Ω [x(kl)] + v(kl) (16)

The state to output map can be chosen as a poly-
nomial function, such as equation (10). With this
choice, the state to output map at any major sampling
instant can be expressed as follows

y(kl) = ΘT χ(kl) + v(kl) (17)

where

χ(kl) =
[
x(kl)

T z(kl)
T
]T

(18)

z(kl) =
[
(x1(kl))

2
2x1(kl)x2(kl) ....

]T
(19)

and

Θ = [C D1,1 D1,2 .... Dn,n ]
T

(20)

Here, Θ is a L × 1 vector with L = n × (n+ 3) /2,
xi(k) represents i’th element of vector x(kl) and Dj,l

represents (j, l)’th element of matrix D.

2.2 Estimation of Model Parameters

The estimation of OBF poles and the parameters of state-
output map of the proposed OBF-Wiener model as well
as the Wiener-OBF-Hammerstein model can be carried
out using a nested optimization approach as proposed by
Srinivasarao et al. [2007]. Thus, given an input-output
data set ΣN , the least squares estimate of the parameters
can be obtained by solving the following minimization
problem(Srinivasarao et al. [2007]).

(Θ̂, ξ̂) =
arg min

ξ
1

q

kq∑
k=k0

[
v̂(kl, Θ̂(ξ)

]2
(21)

subject to

|ξj | < 0 for j = 1, 2....n (22)

Θ̂(ξ) =
[
E
(
φ(kl)φ(kl)

T
)]−1

E (φ(kl)y(kl)) (23)

where E(·) represents the expected value operator. Here,
φ(kl)≡ x(kl) for OBF-Hammerstein model and φ(kl)≡ χ(kl)
for Wiener-OBF-Hammerstein model.

3. MULTI-RATE NMPC FORMULATION

The model identification exercise yields r MISO models of
the form

x(i)(k +1) = Φ(i)x(i)(k) + Γ(i)Λ(i) [u(k)]

yi(ki,l) = Ω(i)
[
x(i)(k)

]
+ vi(ki,l) (24)

where i = 1, 2, ....r, which are used for current state esti-
mation and future set-point trajectory predictions. In this
section, the predictive control formulation is developed
using the Wiener-OBF-Hammerstein models as Wiener-
OBF model and OBF-Hammerstein model form special
cases of this generic model.

3.1 Current state and Inter-sample Output Estimation

Given initial state estimates {x̂(i)(0| − 1) : i = 1, 2, .., r}
and input sequence {u(k) : k = 0, 1, 2, ...} , on-line open
loop state estimators can be constructed as follows

x̂(i)(k +1|k) = Φ(i)x̂(i)(k|k − 1) + Γ(i)Λ(i) [u(k)]

Since the process is assumed to be open loop stable and
poles of matrices

{
Φ(i) : i = 1, 2, .., r

}
are inside the unit

circle by construction, x̂(i)(0| − 1) = 0 can also serve as a
reasonable initial guess. The MISO models can be used for
inter-sample estimation of outputs at any minor sampling
instant as follows

ŷi(k) = Ω(i)
[
x(i)(k)

]
for ki,l−1 ≤ k < ki,l (25)

ŷi(k) represents an estimate of yi(k) generated at the fast
rate. Whenever a measurement becomes available for the
i’th output (i.e. at a major sampling instant kl), the the
model residual can be estimated as follows

vi(ki,l) = yi(ki,l)− ŷi(ki,l) = yi(ki,l)− Ω(i)
[
x(i)(ki,l)

]
(26)
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3.2 Future Trajectory Predictions

In the multi-rate system under consideration, the control
action is taken at every minor sampling instant k. When
the above r MISO models are used to develop a predictive
control scheme, it is unlikely that the operating conditions
remain identical to those during the model identification
exercise. The parameters of the bio-process under consid-
eration may change with with time, which can result in
bias between the estimated model outputs and measured
process outputs. Thus, if it is desired to achieve offset-
free control of the bio-reactor, it becomes necessary to
take additional measures to account for such model-plant
mismatch while developing a predictive control scheme. In
this work, it is proposed to use a modified version of the
dead-beat type disturbance observer to correct the future
trajectory predictions. By this approach, given a set of
future manipulated input sequence at the k’th instant

UF,k = {u(k|k),u(k + 1|k), ....u(k + p− 1|k)} (27)

the fast-rate future state predictions for the i’th model
over a prediction horizon of p can be generated as follows:

x(i)(k + j + 1|k) = Φ(i)x(i)(k + j|k) + Γ(i)Λ(i) [u(k + j|k)]

for j = 1, 2, .....p. The output predictions are generated by
combining the dead-beat disturbance observer of the form

ŷ(k + j|k) = ŷi(k) = Ω(i)
[
x(i)(k + j|k)

]
+ d(k + j|k)(28)

d(k + j + 1|k) = d(k + j|k) (29)

d(k|k) = vf (k) (30)

Here, kl represents the last major sampling instant at
which the measurement was available for the concern out-
put and vf,i(kl) represent filtered model residual obtained
by passing vi(ki,l) through a unity gain filter

vi,f (k + 1) = λivi,f (k) + [1− λi]vi(k)

vi(k) = vi,f (ki,l) for ki,l ≤ k < ki,l+1

λi = exp

[
−T

τi,f

]
Here, τi,f > 0 represent filter tuning parameter for the
i’th output. It may be noted that the proposed scheme for
model-plant mismatch compensation introduces integral
action in the controller formulation.

In practice, the degrees of freedom available in choosing
future manipulated input move for future trajectory ma-
nipulation (denoted as q and called as control horizon)
are fewer than the prediction horizon (p). Moreover, these
can be spread across the prediction horizon through input
blocking as follows

u(k + j|k) = u(k|k) :∀j; j = 1, ...m1 − 1 (31)

u(k + j|k) = u(k +m1|k) :∀j; j = m1 + 1(1)m2 − 1 (32)

...........

u(k + j|k) = u(k +mq−1|k) :∀j; j = mq−1 + 1(1)p− 1(33)

where mj are selected such that

0 < m1 < m2 < .... < mq−1 (34)

3.3 NMPC Formulation

Given a future set-point trajectory {r(k + j|k) : j = 1, 2, ....p} ,
the future prediction error vector ef (k+ j|k) is defined as
follows

ef (k + j|k) = r(k + j|k)− ŷ(k + j|k) (35)

In it’s simplest form, the NMPC at the sampling instant
k is formulated as a constrained optimization problem
whereby the future manipulated input moves u(k|k),u(k+
1|k)......u(k +mq−1 − 1|k) are determined by minimizing
an objective function

min
u(k|k),...u(k+mq−1|k)

p∑
i=1

ef (k + i|k)TWEef (k + i|k)

+

q−1∑
i=1

{
∆u(k + i|k)T WU ∆u(k + i|k)

}
subject to the following constraints

uL ≤ u(k + i|k) ≤ uH for i = 0, 1, .., q − 1

∆uL ≤∆u(k + i|k) ≤ ∆uH for i = 0, 1, .., q − 1

where

∆u(k + i|k) = u(k + i|k)− u(k + i− 1|k)

WU (Input weighting matrix) and WE (Output weighting
matrix) are the tuning parameters, chosen by keeping
process economics, importance of a particular input or
output in mind. The resulting constrained optimization
problem can be solved using any nonlinear programming
technique. The controller is implemented in a moving
horizon framework. Thus, after solving the optimization
problem, only the first move uopt(k|k) is implemented on
the plant, i.e.

u(k) = uopt(k|k)

and the optimization problem is reformulated at the next
sampling instant based on the updated information from
the plant.

4. SIMULATION STUDIES

4.1 Model Identification

To investigate the efficacy of the proposed non-linear iden-
tification schemes, simulation study was conducted on a
continuously operated fermenter system. Production of
ethanol by fermentation of glucose using saccharomyces
cerevisiae yeast is a widely used fermentation process.
A simplified version for such a continuous anaerobic fer-
menter system can be represented by the generalised model
as described below (Henson and Seborg [1992])

dX

dt
=−DX + µ(P, S)X (36)

dS

dt
=D(SF − S)− 1

YX|S
µ(P, S)X (37)

dP

dt
=−DP + (αµ(P, S) + β)X (38)

Here, X (≡ y1) represents biomass or effluent cell mass
concentration, S represents substrate concentration, P (≡
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y2) represents the product concentration, D (≡ u1) rep-
resents dilution rate and SF (≡ u2) represents the feed
substrate concentration. The specific growth rate µ(P, S)
exhibits both substrate and product inhibition and is given
as

µ(P, S) =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

(39)

The nominal model parameters used for simulation study
are taken from Henson and Seborg [1992].

The maximum specific growth rate (µm) is sensitive to
changes in operating conditions. In the present work, it is
assumed that the plant parameter µm and the actuators
fluctuate stochastically as reposted in Srinivasarao et al.
[2007]. It may be noted that the continuous fermenter has
very slow dynamics and open loop settling time is of the
order of 40 hours. Thus, the shortest sampling interval (T )
for model identification is chosen as 1 hour. The measure-
ments of X and P, which are sampled at uniformly dis-
tributed random intervals with minimum sampling interval
of 1 hour and maximum sampling interval of 3 hours. It is
further assumed that the measurements are corrupted with
zero mean Gaussian white noise with standard deviations
0.075 and 0.225, respectively.

The optimum point, at which the biomass and product
concentrations attain their maximum, is selected as the
operating point of the fermenter. To generate the iden-
tification and validation data sets, both the inputs were
simultaneously perturbed using multilevel random signal
with standard deviations of σu1 = 0.04 and σu2 = 6,
respectively. These signals are obtained by modifying the
PRBS signals generated with switching time of 4 hours
using the ‘idinput ’ function in the System Identification
Toolbox of MATLAB. Model identification is carried out
using data collected for 4000 hours of data. Additional 990
hours of data is used for dynamic model validation.

Model performance is compared on the basis of Per-
centage prediction error(PPE), Percentage estimation er-
ror(PEE) (Srinivasarao et al. [2007]), Akaike information
criterion(AIC) values (Pearson and Ogunnaike [1997]) and
the steady-state behaviour.

Optimal pole location of the identified block oriented non-
linear models are reported in Table 2. The results(PPE and
PEE values) of multi-rate model validation are summa-
rized in Table 1. Fig. 3 compares the results of predictions
obtained using proposed Hammerstein and Hammerstein-
Wiener models with Wiener model developed by Srini-
vasarao et al. [2007] from irregularly sampled input-
output data. For multi-rate model prediction efficiency,
i.e. PPE values, of Hammerstein and Wiener models are
comparable. However, there is significant improvement
in prediction capability when process is modelled using
Hammerstein-Wiener structure. Fig. 1 and Fig. 2 present
the comparison of the steady state behaviour of the plant
with the identified models for biomass concentration (X)
and product concentration (P ) with respect to dilution
rate (D) and substrate concentration (SF ). Performance
(Fig. 1) of the Hammerstein model was found to be poorest
among the three. Between the remaining two identified
models, Hammerstein-Wiener captures the steady state

Fig. 1. Steady-state map of cell mass concentration(X)

Fig. 2. Steady-state map of product concentration(P )

behaviour of the system over a wide operating range in
a better way when compared with the Wiener model.

From Table 1, it can be observed that PEE values obtained
using Hammerstein-Wiener model are significantly smaller
than the PEE values obtained using Hammerstein or
Wiener model for the multi-rate case. Despite of the fact
that number of model parameters is high in case of Wiener-
Hammerstein model, AIC value (Table 1) of the same
is the lowest among all three. In addition to this, the
identified Hammerstein-Wiener model generates excellent
inter-sample predictions(Fig. 3).

Table 1. Dynamic model validation statistics

Output Model Nm PPE PEE AIC

X Wiener 18 14.5 14.037 −2866
X Hammerstein 20 13.2 17.77 −2373
X Hammerstein-Wiener 42 8.25 8.6481 −3747

P Wiener 18 10.1 9.60 1898
P Hammerstein 20 7.11 10.94 2173
P Hammerstein-Wiener 42 5.32 5.632 930

4.2 Multi-rate Predictive Control

The identified Wiener Hammerstein model was further
used to develop a multi-rate NMPC scheme. The perfor-
mance of the NMPC scheme is evaluated for the following
servo and regulatory changes:

• Positive step change(25%) in the plant parameter(µm)
• Shifting operation from a sub-optimal point to an
optimal operating point.
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Fig. 3. Dynamic model validation for multi-rate model

Fig. 4. Multi-rate regulatory control: Variation of con-
trolled output and plant parameter (µm)

Dilution rate (D) and substrate concentration (SF ) are
manipulated using the above mentioned NMPC scheme to
control biomass (X) and product (P ) concentrations. The
tuning parameters used for controller tuning are as follows:
WE = diag[1 1] WU = diag[0 0] p = 20 q = 5.
NMPC scheme with equal input blocking(= [4 4 4 4 4])
is implemented using Wiener-Hammerstein model along
with the scenario that measurements are available at an
irregular rate as discussed earlier. The multi-rate NMPC
is found to be robust to step change in plant parameter µm

(Fig. 4). The NMPC successfully moves the system from
a sub-optimal operating point to the optimum operating
point, which is singular point where gain changes sign, and
maintain operation at the peak (Fig. 5).

5. CONCLUSION

In this work, it proposed to use Wiener-Hammerstein
type fast-rate time series models for achieving a tight

Table 2. Optimum GOBF poles2 of Hammer-
stein(I) and Wiener-Hammerstein(II) models

Input Model I(X) Model II(X) Model I(P ) Model II(P )

u1 [4.2 10.0] [5.3 14.5] [5.81 10.1] [7.7 14.5]
u2 [2.1 0.1] [7.19 7.2] [13.9 13.9] [8.1 8.1]
u2
1 [9.6 9.6] [16.8] [10.9 10.9] [19.8]

u2
2 [6.3 6.3] [6.3] [13.4 3.1] [10.8]

u1u2 [11.7 1.6] [18.1] [7.3 7.3] [20.2]
2Discrete-time poles(ζ) are reported in terms of equivalent
continuous-time time constants(τ), where ζ = exp(−T/τ).

Fig. 5. Multi-rate servo control: Variation of controlled
output and plant disturbance

control of a continuous fermenter. The efficacy of the
proposed modelling and control scheme is demonstrated by
conducting simulation studies on a continuous fermenter
system that exhibits input multiplicity and gain reversal
in the desired operating region. The modelling studies
reveal that the proposed Wiener-Hammerstein model has
better dynamic and steady state prediction capability
when compared with Wiener or Hammerstein model. The
multi-rate NMPC scheme developed using the Wiener-
Hammerstein model produces satisfactory servo and regu-
latory responses.
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