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Abstract: This paper considers the multiscale optimal control of crystal growth. The optimal
control is realized for the crystal pulling arm modeled by the standard rigid body dynamics,
while the underlying dynamics of the diffusion of heat in the crystal growth region is given by
parabolic partial differential equations (PDEs) with time varying spatial domain. The underlying
transport-reaction system is developed from the first principles and the associated dynamics
is analyzed in appropriate functional state space setting. The complete description of the
evolutionary parabolic domain time varying PDE is provided and explored within the coupled
master-slave control setting. Numerical simulations demonstrate an optimal pulling evolution
rate and its effects on the temperature profile in the crystal with the time varying domain.
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1. INTRODUCTION

The application of optimal control to industrial processes
is highly desirable where the benefits are realized in the
quality of process outputs in addition to the economic
gains that arise from the reduction in associated produc-
tion costs. In order to maximize the benefits of control
application, the appropriate model of the process must be
determined. Often in processing, the material undergoes
some property transition over an interval of time that is
reflected as a change of state or shape of the material.
This implies that the dynamical features of the system
will be transformed and therefore the process model must
incorporate the time-dependent evolution of the material
domain to remain valid over the given interval of time.
The development of physical models of the governing
dynamics of systems with time varying spatial domains
and the application of control to these systems therefore
represents an important area of research. In some cases,
it is possible to apply control to the domain in order to
obtain the desired operating characteristics. The dynamics
of transport-reaction processes are typically modelled by
parabolic PDEs and in simple model dynamics represen-
tation are usually restricted to regions with fixed domains.
However, there is a significant number of industrially im-
portant processes in which the material and/or process
controlled volume evolve in time, by changing the shape
or just undergo change due to underlying velocity field,
see Brown et al. (1991). In particular, a prime example
of time-varying domain transport-reaction process is a
Czochralski crystal growth, see Derby and Brown (1987,
1986a,b); Brown (1988), see Fig.1, in which the solidified
crystal of high purity is pulled out from the melt, so
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Fig. 1. An example of a process with time varying domain
is given by the Czochralski crystal growth process.

that the crystal controlled volume changes in a shape
and size as the solidification process takes place at the
crystal-melt interface. In particular, the shape and crystal
size evolves and contributes to the time varying nature
of the process parameters which are of the prime interest
to be controlled. There are several works which consider
control of Czochralski crystal growth, see Armaou and
Christofides (2001), and control of time-varying domain
parabolic PDEs, see Armaou and Christofides (1999), in
which time dependent domain evolution was usually pre-
specified. Existing works have also considered the applica-
tion of proportional control to crystal growth, see Derby
et al. (1987), however the need to optimally control the
process arises from the high importance of maintaining the
temperature distribution through the crystal and crystal-
melt interface for production of high-purity crystals. Along
the same line of work, the optimal control realization of
the process with time varying boundary described by the
parabolic PDEs has been considered, where the multiscale
model of rigid body dynamics is incorporated in the op-
timal control regulation of the crystal temperature, see
Wang (1990, 1995).

Therefore, motivated by these works our primary objec-
tive in this paper is to provide a detailed formulation of
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the parabolic PDE model of a transport-reaction process
with time varying domain in the framework of Czochral-
ski crystal growth and to demonstrate the application of
optimal control through the actuation of the pulling arm
which affects the movement of the underlying parabolic
PDE boundary. We provide a multiscale model description
which consists of a model of rigid body dynamics entangled
with the parabolic PDE model of temperature distribution
in the growing crystal slab. The underlying time varying
nature of the temperature distribution is defined in well
posed functional state space setting, and in this work we
do not consider any temperature based actuation within
domain, whereas the finite dimensional optimal control
is applied to the pulling of the crystal out of melt. We
provide a novel insight into this multiscale optimal control
problem and the immediate realization of the optimal
control strategy for Czochralski crystal growth process.

2. PRELIMINARIES

The process model is formulated starting from the first
principles dynamical equations for continuum mechanics
for the purpose of incorporating the time-dependent evolu-
tion of the spatial domain in the model description. In par-
ticular, we will utilize the Reynolds Transport Theorem in
ensuing model development, see Leal (1992). We define the
physical space region as the open set, Q C R? with mate-
rial points, £ = (él, &, ég,)7 and consider an arbitrary time
dependent, moving subregion of 2 which is the open set
U(to,t1) C Q with volume element dv and spatial points
& = (&1,£,&3). The surface of U(tg, t1) is the piecewise C*
boundary 0U(to,t1) and consists of the element ds. The
reqular motion of the boundary is described by the flow of
OU(to,t1) along the spatial velocity field w(g,t), where w
is the continuous and invertible mapping w : ¥(2) — R3,
such that U(tg,t1) = ¥(Up) is the region at time ¢ in
the interval [to,t1] relative to its initial configuration at
to. The regularity of the motion presumes the boundary
OU (tg,t1) remains intact such that U(tg,t1) is not, for
example, divided or penetrated. We note the relationship
between the spatial points & € U(tp,t;) from é € Q as

the mapping £ = ¥U(§) and define = as a scalar physical
quantity (for example, temperature or concentration) at
t € [to,t1] at position £. Due to the proper definition of the

mappings between £ and £ space, we invoke the Transport
theorem on U(to,t1) as follows, see Marsden and Hughes
(1983); Leal (1992).

Let = z(&,t) be a bounded C! function on the open set
U(to,t1) C Q that is continuous on the moving boundary
OU(to,t1). By the Transport theorem, see Marsden and
Hughes (1983), the time rate of change of x in U(to,t1)
is expressed as:

Cp% / xzdv = cp / (%ﬁ +V- (xw))dv (1)

U(to,t1) U(to,t1)

where c¢ is the specific heat capacity and p is the mass
density. It is assumed that the physical properties, ¢ and
p, remain invariant for the interval of time [to,t;] and
throughout the region U(top,t1). The interchange of the
differentiation and integration over U(tg,t1) = U (Up) is
validated by the initial assumption of the continuity of the
mapping ¥ that preserves the structure of the domain for
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& € U(to,t1) in the interval [tg,t1]. The heat flux, f(, 1),
across ds and internal reactionary heat sources and sinks,
h(&,t), are given as:

f=—-kVz (2)
h=pg—~yx (3)

where k, v and g denote thermal conductivity, heat loss
and heat generation, respectively. The negative assignment
for the term in f reflects the direction of heat transfer
relative to the normal component of the boundary while
the sign assignments for the terms in & correspond to the
possible exothermic or endothermic reactions occurring in
the region. The Conservation Law provides that the total
heat flow balance in a region U (g, t1) is:

cp% / xdv = / hdv — / f-nds (4)

u(to,tl) Z/l(to,tl) au(to,tl)

with n denoting the unit outward normal component of
surface element ds. Eq.4 represents the integral form of the
Conservation Law. The material form of the Conservation
Law, see Marsden and Hughes (1983), can be determined
from its integral form by substituting Eq.2 into Eq.4,
arrangement of terms and invoking the divergence theorem
for the integrand over U (to,t1), to obtain:

/ [cpCZ — V- (kVz)—h|dv=0 (5)
U(to,t1)

The material form of the Conservation Law arises from the
assumption of continuity throughout the region over the
interval [to, t1] which implies the vanishing of the integrand
over U(tg,t1), in Eq.5. The substitution of Eq.1 into Eq.5
and arrangement of terms yields the following general
expression of the heat equation for the region U(to,t1)
where the boundary, OU (tg, t1), is moving with the velocity
field w:

cp% =V (kVz) —cpV - (zw)+h (6)

One can notice that Eq.6 differs from the standard well
known material derivative expression for transport of a
scalar property for the term cpV - (zw), see Leal (1992),
demonstrating that the inclusion of the time dependent
spatial domain provides a more detailed description of
the system dynamics. Further, we note that the dilatation
or contraction of the moving region, U(tg,t1), is due to
the motion of the boundary, OU(to,t1), along the spatial
velocity field, w, that determines the configurations of
U(tp,t1) in the interval [tg,t1]. The expansion of the
expression V - (zw) gives:

V- (zw) =2V -w+w- -V (7)

Therefore, due to the assumption of density invariance
which implies incompressibility of U (to, 1), the divergence
of the velocity field vanishes such that V- w = 0. In consid-
eration of the mapping of points, §A, in Q to & in U(to, 1),
the relation among the spatial and material coordinates
is given by velocity field, w(,t) = ¥ (£, t)/0t = d€/dt,
so that contribution of the moving boundary to the scalar
quantity, x, is obtained as:

dfj or
dt 9¢;

w- -V =

(8)
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for j = {1,2,3}. In other words, this term can be viewed
as the type of convective transport due to the motion of
the subregion U(tg,t1). From the Eqs.6-7-8, we obtain the
expression for the heat equation for the region U(tg, 1)
with moving boundary, OU (tp, t1), as follows:

cp% =V (kVz)—cp(w-Vz)+h (9)
In the case when the domain becomes constant Eq.9 leads
to the well known expression of the reaction diffusion
parabolic PDE. The general form of the boundary con-
ditions imposed upon Eq.9 for prescribed functions a, b, r
over OU(to,t1), where Ox/dn is the outward normal com-
ponent to the boundary of the domain, is expressed as:

ox
==
ax+ 3

1
- (10)
OU(to,t)

=7

The boundary conditions of Eq.10 relate the temperature,
x, on the boundary of the region and the flux of z through
OU (tg, t1). In the ensuing work, the definitions of Dirichlet,
Neumann and Robin boundary conditions can be applied
without loss of generality in a three or lower dimensional
space setting.

3. MODEL DYNAMICS OF CZOCHRALSKI
CRYSTAL GROWTH

The process model in Eq.9-10 provides the complete physi-
cal description of transport of heat or diffusion in a moving
region with a time dependent spatial domain. In this work,
we consider the one-dimensional case of Czochralski crys-
tal formation governed by the dynamics described by Eq.9-
10 such that the domain is the Hilbert space Lo (0, 1) where
I = 1(t) is the length of the domain at each time ¢ € [t, t1].
The evolution of the boundary with respect to time is
determined by the realization of the pulling arm motion,
see Wang (1990); Brown (1988), with dynamics governed
by the second order rigid body dynamics equation for
mechanical systems:

MI(t) = vi(t) +nl(t) = fe(t) (11)
where M is the mass of the system and v, n, f.(¢)
are the respective dampening coefficient, elastic coefficient
and control force of the system. We make a reasonable
assumption that the velocity of the boundary, w = I(¢),
is bounded for all ¢, implying that f.(¢) is finite in
magnitude as ¢ — oo. The governance of the domain
motion by the rigid body equation results in a coupled
system consisting of Eq.9-11. To facilitate the discussion of
dynamic behaviour of this system, we consider Eq.9-10 in
the absence of heat sources and sinks. Further, we assume
that the thermal conductivity, k, is constant throughout
the region and define the diffusivity constant as k = k/cp
so that Eq.9 is reduced to the following equation:

Ox kﬁzx Oz

For the general case of boundary conditions imposed on
Eq.12 one can take process parameters a = 1, b = 1 and
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r = 0in Eq.10, so that the boundary conditions associated
in Eq.12 become:

manfggaw:o (13)
dhﬂ+%?hﬂ:0 (14)

The negative sign in Eq.13 is assigned because dxz/0n =
—1 at the point £ = 0. The initial temperature distribution
is given as:

x(£,0) = xq (15)

Equations 12-13-14-15 provide a well posed PDE problem

that is coupled with the standard rigid body equation,

Eq.11, for mechanical systems determining the evolution

of the domain. In order to ascertain the dynamics of the

system we determine the structure of the time varying

spatial operator. We note that Eq.12 can be written as:
oz

— —Lx=0

5 (16)

with the associated boundary conditions of Eq.13-14 where
L is the second order ordinary differential equation that
gives the time-varying spatial operator as:

_ L d) d()
E(-)—kd£2 ng

(17)

In consideration of Eq.17 we seek solutions of the following
eigenvalue problem:

Lo =—\o (18)
for the eigenvalue A. In lieu of the boundary conditions,
Eqgs.13-14, the eigenvalue problem for the time varying
spatial domain operator becomes:

¢ do
hgg ~ g = N (19)
¢(0) — ¢'(0) =0 (20)
o) +¢'() =0 (21)

In order to obtain solutions to Eq.19, we let z1 = ¢(&)
and zo = ¢'(§) to transform the second order differential
equation to a system of first order ordinary differential
equations represented as 2(§) = I'z(£). A non-trivial,
unique solution may be found for the boundary conditions
given in Eq.20-21 so that problem is well-posed and a
solution is found in the form of:

2(€) = I'z(&o) (22)
where z(&p) is the vector of the boundary conditions at
& = 0. In the case of Czochralski crystal growth, we
assume that the boundary conditions are natural (Neu-
mann) boundary conditions. The physical interpretation of
these boundary conditions is that the pulling arm is well
insulated from the crystal so that 22(0) = 0 = 0x(0)/0¢,
while the temperature of the crystal at this boundary is
21(0). There is also zero flux across the interface between
the crystal and the melt so that z3(l) = 0 and the tem-
perature of the crystal and the melt, z;(l), is the same
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at the interface. From the Eq.22 we obtain the expression
corresponding to the prescribed boundary conditions as:

2Xp 2 e 10 ginh (12(2)/0 21(0) =0 (23)
where p = w? — 4k\. The trivial solution to Eq.23 occurs
when A\ = 0, such that ¢(§) = 0 for all I(¢) and singular
solutions occur when A = w?/(4k). The two remaining
cases for 4 > 0 and p < 0 reveal the possible eigen-
values and associated eigenfunctions that satisfy Eq.23.
For pu > 0, we have that A < w?/(4k) and the resulting
eigenfunctions correspond to exponential growth in time
and therefore they are not physically realistic descriptions
of the diffusion problem that is naturally dissipative in the
absence of internal and external sources of heat. For the
case where p < 0, we have that A > w?/(4k) and there
exists a countable infinite set of eigenvalues {\,,n € N}
that satisfy Eq.23 where:

Anlt) = — lk (%)2 +k (2“];)2]

In consideration of Eq.18 we obtain a set of corresponding

eigenfunctions:
nm
a(frme) | e
1) (l(t) ]

(24)

 Bef feos (MTe) L g
dn(&,t) = Bre cos (l(t) ) 57 1 si
with coefficients B,, to be determined. It can be verified
that Eq.25 satisfies Eq.19 for the eigenvalues defined in
Eq.24. In order to determine the coefficients B,,, we defined
the adjoint eigenfunctions as ¢* (£,t) = e~ %€, (£,t) with
orthogonality relation:

n#m  (26)

L2(0,1)

where ®(,t) is a weighting function. Due to the orthogo-
nality of eigenfunctions, that is (¢, ¢%,)e = 0, by taking
n = m in Eq.26, the set of coefficients B,, can be deter-

mined as:
5 2
w
— |1+ | 50
1(t) <2kl(t) )

One can notice that the operator £ given in Eq.17 with
associated boundary conditions Eqs.20-21 has a similar
features as Sturm-Liouville system, see Ray (1981), which
describes an axial dispersion model of homogeneous chem-
ical reactor in which a zero-order exothermic reaction
takes place. Moreover, the eigenvalue and eigenfunction
expressions of Eqs.24-25 are in agreement with the opera-
tor arising from the heat/diffusion parabolic PDE natural
boundary conditions problem fixed domain expressions,
that is, in the limit ¢ — oo, w — 0 and I(t) = const. An-
other important characteristic of a model with the moving
domain is that usual notion of the “energy” of the system
which is in the case of the parabolic system described by
the spectrum of the operator £ in its expression posses the
term which has a feature of the “kinetic energy” associated
with the moving boundary, Ej, = 2—116“’72 Fig.2 shows time
evolution of the first two eigenfunctions defined in Eqs.25-
27 and for two times ¢t = 2 and ¢ = 100 where evolution of

1
2

Bn(f?ﬂ = (27)
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Fig. 2. Time evolution of first two eigenfunctions ¢;(&,t)

and QZ)Q(E, t).
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Fig. 3. Eigenvalues evolution given by the Eq.24 and under
the implementation of the control law FEq.34.

I(t) is generated as a solution of optimal control problem
given as Eqs.32. Fig.2 illustrates the different behavior
of the first two eigenfunctions for two time instances.
Complementary to the evolution of eigenfunctions one
obtains the evolution of eigenvalues defined in Eq.24, see
Fig.3. One can notice that the eigenvalue problem for the
operator L given by Eqs.19-20-21 for the each fixed time
yields a point spectrum which does not have accumulation
point, in other words, this continuous spectrum at each
time instance can be viewed as a point spectrum of the
operator L. In this paper, we do not prove properties of
time varying operator £, and we will assume that at each
time instance the operator £ is a spectral operator, see
Curtain and Zwart (1995), which has underlying eigen-
functions utilized in the construction of the time varying
Hilbert space, see Wang (1990).

4. CONTROLLER FORMULATION

In this section, we provide an optimal control law synthesis
which is associated with the pulling arm dynamics and
affects the properties of the underlying parabolic PDEs
through the boundary evolution. We define the appro-
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priate time varying separable Hilbert spaces, V(t) and
H(t) consisting of functions defined on U(to,t) such that
V(t) € H(t) C V'(¢), the dual of V(t), with V(¢) dense in
H(t), H(t) dense in V' () and with continuous correspond-
ing injections. We introduce the notion of the bilinear
forms on V(t) : ¢, — a(t;¢,1) with the following two
properties, 1.) Vo, 1, the function a(t; ¢, ) is measurable
such that following holds, [[a(t; &, ¥) | < cléllvr v,

2.) a(t; d,0) + Moz, o) = 0lldlly, o), ¥ & € V'(2), for
appropriately chosen constants which do not depend on
time. Let A(t) be an operator from G(V(t),V'(t)) defined
by a(t; ¢, 1) = (A(t)¢, 1), so that for dependence of (¢, 1))
on the time dependent spatial domain U(tg,t1) , we obtain
(p, ) = fu(to,tl) pdv. Since, the V(t) has a time depen-

dent countable basis {¢1(t), p2(t), -}, we seek Galerkin
approximation of the solutions Eqs.12-13-14 in the form,

2(&1) =Y an(t)dn($) (28)

where N is the order of the approximation. We utilize
the orthonormal eigenfunctions as a basis on to which
we project our system of equations to get the state
representation as:

a(t) = Aa(t)a(t) (29)
In this work, we only consider the application of optimal
control to the moving arm dynamics governing the motion
of the boundary Eq.11, coupled with the dynamics of
the Czochralski crystal growth process, Eq.12-13-14-15.
Although, the natural dissipation of heat in the absence of
generation terms implies inherent stability of the system,
and since we do not consider heat input injection in this
model, our objective is to demonstrate and investigate
the effect of control on the temperature distribution of
the system, through the optimal motion of the boundary.
One can see from Eq.24-25-27 that both the length and
change of the domain will impact dynamics of the system.
The system representation of Eq.11 is obtained by letting
y1 = l(t) and yo = I(t), with o = v/M, 7 = n/M and

F(t) = f.(t)/M to get:

HEEIREHIC

The general form of Eq.30 can be expressed compactly as
y(t) = Any(t) + By f(t). The dependence of the process
the evolution of the boundary requires the augmentation
of the state matrix of Eq.29. The state matrix, Ay, is
partitioned to include only the terms (nm/I(t))?, and it
is combined with Eq.30 to obtain the augmented state
system for the diffusion problem coupled with the rigid

body equation:
2 ~
-5 [o] 2]+ [ Jroa

HEERIH

Equivalently, we denote the system given by Eq.31 as
q(t) = A(t)q(t) — P(t)a(t) + BJ(t)

]T

(30)

(32)
where ¢ = [y a]' is a state vector. The state matrix,

A(t), contains only decoupled diagonal elements so that
the design of optimal state feedback for the system given
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Fig. 4. Closed loop temperature distribution under optimal
control given by Eq.34.

in Eq.30, reduces to the solution of the finite dimensional
solution of the Riccati equation:

0= A, P+ PA,+Q—PB,R'B.,P (33)
with appropriately chosen weights on @ and R. The
resulting LQR control law is

- 1.

f(t) = =5 R B, Py(t) = —Ky(t) (34)
where P is a positive definite solution to the LQR-ARE
Eq.33.

5. SIMULATION AND NUMERICAL RESULTS

Simulations of the system given in Eq.32 were carried out
over a maximum domain length of 27 and a time interval of
t € [0,100] seconds. The parameters of the pulling arm for
Eq.30 were prescribed by setting the dampening constant
of v = —0.002, elastic coefficient, 7 = 7 and the mass of
system was M = 10. For the process state equation, the
diffusivity constant was set at k = 1.5. Under these process
conditions, the gain matrix, for @ = 0.5 and R = 0.01, was
determined to be K = [2.95 10.4] resulting in the closed
loop eigenvalues of [—0.522 4 0.850i, —0.522 — 0.8504]. The
N = 16 order approximation is used to simulate the
temperature distribution. The closed loop temperature
distribution over the time interval and domain is shown
in Fig.4. The temperature of the crystal reaches the final
state in approximately 90 seconds as the domain motion
approaches its nominal position of 3.8 from an initial
perturbed position of 27 and initial velocity of zero. Fig.
5 shows the evolution of the boundary over the time
interval with the oscillations due to the contribution of
the elastic coefficient of the control arm. The temperature
of the system reaches the desired state only when the
length of the domain reaches the nominal value. This
clearly demonstrates that the dynamics of the system are
dependent on the evolution of the domain and must be
considered to obtain an accurate model of the process.

6. CONCLUSION
In this work, we developed model dynamics of time-

dependent domain of transport-reaction process which de-
scribes the industrially important problem of Czochralski
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Fig. 5. Controller driven domain motion.

x(&n

W C

Fig. 6. Three-dimensional representation of closed loop
temperature distribution under optimal control given

by Eq.34.

crystal growth. The complete description of the time de-
pendent parabolic PDE within the operator description in
appropriate functional space setting is considered. The op-
timal control realization is associated with the mechanical
based part of the multiscale process model. In particular,
we provide the optimal control associated with the pulling
force which controls the boundary time evolution and
therefore affects the underlying parabolic PDE properties.
The process model for the temperature distribution in the
crystal was considered in the 1-dimensional case with nat-
ural boundary conditions. Future works will consider the
process model in higher dimensional cases, different coor-
dinate systems and the associated boundary conditions to
obtain the complete representation of the physical system.
At this stage, we did not consider the spatially distributed
heating source which in realistic process realization of
Czochralski crystal growth, is crucial for the tight tem-
perature control in the crystal slab. In the future work,
we will consider optimal control realizations which include
spatially distributed heating, and require satisfaction of
input and state constraints.
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