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Abstract: Driven by the current economical needs, developments in process design and control
point out that deliberate operation of chemical process requires better models and control
designs than what is offered by the traditional Linear Time-Invariant (LTI) framework. In
this paper an identification approach based on Linear Parameter-Varying (LPV) models is
introduced for process systems which enables the use of powerful LPV control synthesis tools.
LPV systems represent an intermediate step between LTI and nonlinear descriptions as they are
capable of describing the system over its whole operating range but preserve many advantages of
LTI descriptions. Estimation of LPV models is efficiently solvable by using series expansion type
of model structures, like orthonormal basis function models. Advantageous properties of this
approach and modeling paradigm are investigated with respect to process models and the added
value over LTI models is demonstrated via an example of a continuous stirred tank reactor.

Keywords: Nonlinear system identification; linear parameter-varying systems; orthonormal
basis functions; nonlinear process control.

1. INTRODUCTION

Many chemical processes exhibit nonlinear behavior with
a significant contribution to the overall dynamics of the
plant. Control of these systems is often found to be chal-
lenging. Especially when processes are operated under
changing steady state conditions (set-point changes, start-
up procedures, grade changes) the nonlinear behavior of
the processes becomes apparent, often requiring the use of
dedicated nonlinear control approaches. To meet with the
increasing performance demands of the chemical industry,
often modern control design methods, like model-based
control and optimization strategies are applied, e.g. Non-
linear Model Predictive Control (NMPC). However, these
approaches require accurate dynamic models to obtain
satisfactory performance and robustness. For this purpose
usually rigorous first-principles models are developed. Im-
portant disadvantages of these models are that they suffer
from a lack of validation on real-life data, and/or from
a high level of model complexity in terms of nonlinear
relationships, partial differential terms, etc. It appears to
be attractive to identify nonlinear process models from
measured data, in order to arrive at relatively simple
descriptions of the plant. In this problem the principle
question is which (nonlinear) model structures are to be
used for the identification.

In nonlinear identification, Hammerstein and Wiener mod-
els are widely used, due to their relatively simple structure.
Many identification and control methods are available for
these model classes. However, such structures can only rep-
resent a limited class of nonlinearities and their identifica-
tion represents a harder problem than in the Linear Time-
Invariant (LTI) case. Thus, instead of a global nonlinear

description of the plant, often an intermediate description
is searched for, that preserves the advantageous properties
of the LTI models but is still able to represent a wide range
of nonlinear systems. Especially in process systems it can
often be observed that the process dynamics are well ap-
proximated by a linear model, provided that the operating
conditions do not change considerably. In order to extend
the validity of the linear models over a range of operat-
ing conditions, the concept of Linear Parameter-Varying
(LPV) models appears very attractive (Rugh and Shamma
(2000)). As a generalization of the classical concept of gain
scheduling, this framework is able to model nonlinear pro-
cess dynamics in a dedicated modeling framework, where a
scheduling variable represents the varying operating con-
ditions of the process. Furthermore, the resulting models
are applicable for well-developed extensions of the LTI
control strategies, like PID (Kwiatkowski et al. (2009)),
MPC (Besselmann et al. (2008)), optimal (Packard (1994))
and robust control (Zhou and Doyle (1998)). In this paper
we present a general framework and identification method-
ology for LPV process models from experimental data. A
few examples of existing approaches of LPV identification
are Giarré et al. (2006); van Wingerden and Verhaegen
(2009); Tóth et al. (2009a,b) and Zhu and Ji (2009).

The basic philosophy that we follow in this paper is to
identify LTI models, in several operating points of the
process, and to interpolate the resulting models (possibly
on the basis of experimental data with varying operating
conditions). The resulting global LPV model gives a lin-
ear description of the dynamics over the entire operating
regime of the plant. This LPV identification method is
referred to as the local approach and is observed to work
well for processes with relatively slow variation of the
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operating conditions (Tóth (2008)). The choice of model
structures to be used for this identification strategy is of
crucial importance. The model structure must be easily
interpolatable and not affected by the possibly changing
system order for different operating conditions. To meet
with these requirements we apply series-expansion models
based on Orthonormal Basis Functions (OBFs). An at-
tractive property of this model structure is that the several
local linear models are represented in the same basis, with-
out constraints on possibly changing local model orders,
resulting in easily interpolatable model descriptions. A
further attractive property of this model structure is the
linear-in-the parameters property of the associated one-
step-ahead output predictor. The latter property allows
the use of simple linear regression algorithms for the iden-
tification of these models (being even more attractive in a
multivariable setting).

The paper is organized as follows: In Section 2 LPV sys-
tems are introduced with the basic model structures of-
fered by this framework. In Section 3 the concept of OBFs
is described and their advantages in LPV identification are
motivated. In Section 4 the local identification approach
of LPV-OBF models is developed and model structure
selection is discussed in the proposed setting. In Section 5
the validity of the presented approach is proved through
an example of a continuous stirred tank reactor and in
Section 6 the conclusions of the paper are presented.

2. LPV MODELS

The LPV system class can be seen as an extension of LTI
systems as the signal relations are considered to be linear,
but the model parameters are assumed to be functions
of a time-varying signal, the so-called scheduling variable
p : Z → P with a scheduling space P ⊆ R

n. This variable
is used to indicate the changes in the dynamical signal
relations of the plant at different operating conditions. The
dynamic description of a LPV system S can be formalized
as a convolution in terms of p and the inputs u : Z → R

nU :

y(k) =
∞
∑

i=0

gi(p, k)u(k − i), (1)

where y : Z → R
nY denotes the output of S and k ∈ Z is

the discrete time. The coefficients gi of (1) are functions of
the scheduling variable and they define the varying linear
dynamical relation between u and y. This description can
also be seen as a series expansion representation of S in
terms of the so called pulse basis {q−i}∞i=0

, where q is
the time-shift operator, i.e. q−iu(k) = u(k − i). It can be
proven that for an asymptotically stable S, the expansion
(1) is convergent (Tóth (2008)).

If the functions gi only depend on the instantaneous value
of the scheduling signal, i.e. gi(p(k)), then their functional
dependence is called static. Otherwise the dependence is
called dynamic, as the given coefficient not only depends
on the instantaneous but also on time-shifted values of
p. An important property of LPV systems is that for a
constant scheduling signal, i.e. p(k) = p for all k ∈ Z,
(1) is equal to a convolution describing an LTI system as
each gi(p, k) is constant. Thus, LPV systems can be seen
to be similar to LTI systems, but their signal behavior is
different due to the variation of the gi parameters. Note
that in the literature there are many formal definitions

of LPV systems, commonly based on particular model
structures and parameterizations. The convolution form
(1) can be seen as their generalization.

In identification, we aim to estimate a dynamical model of
the system based on measured data, which corresponds to
the estimation of each gi in (1). This estimation is formal-
ized in terms of a model structure, an abstraction of (1),
and an identification criterion. A particularly attractive
model structure in the LPV case follows by the truncation
of (1) to a finite number of expansion terms. Assuming
static dependence of gi, the resulting model reads as

y(k) =
n

∑

i=0

gi(p(k))u(k − i), (2)

which can be seen as the LPV version of the well known
LTI Finite Impulse Response (FIR) models. Such models
have many attractive properties in terms of identification,
like linearity-in-the-coefficients that allows to use linear
regression for the estimation of the coefficients gi if they
are linearly parameterized:

gi(p(k)) =

ni
∑

j=0

θijfij(p(k)), (3)

where θij ∈ R
nY×nU are the unknown parameters and

fij are prior selected functions. Furthermore, noise or
disturbances in the system can be modeled in an output
error (OE) sense with this model structure, which allows
independent parametrization of the noise model. However,
a well known disadvantage of FIR models, both in the LTI
and the LPV cases, is that the expansion may have a slow
convergence rate, meaning that they require a relatively
large number of parameters for an adequate approximation
of the system. In order to benefit from the same properties,
but achieve faster convergence rate of the expansion, it is
attractive to use basis functions which, opposite to q−i,
have infinite impulse responses. A particular choice of such
a basis follows through the use of OBFs.

3. ORTHONORMAL BASIS FUNCTIONS

In identification and modeling of LTI systems, the concepts
of OBFs based model structures have been extensively
studied (Heuberger et al. (2005); Ninness and Gustafsson
(1997)). The OBFs are defined as orthonormal transfer
functions in H2 (Hardy space of square integrable complex
functions) that form a basis. This way they are able
to efficiently represent transfer functions, and hence all
associated LTI systems, by their linear combinations.

The transfer function F ∈ HnY×nU

2
of a (local) LTI model

can be written as

F (z) = W0 +
∞
∑

i=1

Wiφi(z), (4)

where {φi}
∞

i=1
is a basis for H2 and Wi ∈ R

nY×nU . In
the theory of Generalized Orthonormal Basis Functions,
the functions φi(z) can be generated by applying a Gram-
Schmidt orthonormalization to the sequence of functions

1

z − λ1

,
1

z − λ2

, . . . ,
1

z − λng

,
1

(z − λ1)2
, . . . (5)

with stable pole locations λ1, . . . , λng
. The choice of these

basis poles determines the rate of convergence of the series
expansion (4). Note that, due to the infinite impulse
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response characteristics of each φi(z), a faster convergence
rate of the expansion can be achieved with (4) than in
the FIR case. This construction also provides a way to
incorporate prior information about the system in terms
of pole locations. For more on OBFs and their properties
in the LTI case see Heuberger et al. (2005).

By using a truncated expansion in (4) an attractive model
structure for LTI identification results, with a well worked-
out theory in terms of variance and bias expressions. The
series expansion (4) can be extended to LPV systems,
such that for a given basis {φi}

∞

i=1
an LPV system can

be written as

y(k) = W0(p, k)u +
∞
∑

i=1

Wi(p, k)φi(q)u, (6)

where Wi are matrix functions with dynamic dependence
on p. An obvious choice of model structure is to use a
truncated expansion, i.e. truncating (6) to a finite sum in
terms of {φi}

n
i=1

, and to assume static dependence of the
coefficients just like in the FIR case (see (2)):

y(k) = W0(p(k))u +
n

∑

i=1

Wi(p(k))φi(q)u, (7)

Note that these expansions are formulated in the time
domain (using the shift operator q), as there exists no
frequency-domain expression for LPV systems. Similar to
the FIR case, this structure is linear in the coefficients
{Wi}

n
i=1

. An important question that arises is wether
the basis functions φi can be chosen such that a fast
rate of convergence can be accomplished for all possible
scheduling trajectories p.

4. IDENTIFICATION OF LPV-OBF MODELS

Next we investigate how LPV-OBF models in the form of
(7), i.e. under the assumption of static dependence, can be
estimated in practice. Note that, to obtain an LPV-OBF
model, first a set of basis functions {φi}

n
i=1

must be chosen
and subsequently the coefficient functions {Wi}

n
i=0

have to
be estimated. To simplify the discussion we first assume
that the basis functions are given a priori.

Estimation of the coefficient functions: LPV-OBF mod-
els can be identified based on two approaches. In terms of
the so-called “local approach,” the LPV model is estimated
as a blended model structure based on data collected
from the system for Nloc constant scheduling trajectories
p(k) ≡ pj ∈ P (chosen operating points). The resulting

discrete time (DT) data sequences Dj = {uj(k), yj(k)}Nd

k=1

with j = 1, . . . , Nloc are recorded for a given sampling
time Td > 0. Based on these data records, samples of the
unknown Wi coefficient functions are estimated in (7) for
the constant scheduling points pj . This is accomplished via
the estimation of Nloc LTI-OBF models using a standard
least-squares criterion in a one-step-ahead prediction error
setting with OE noise model. This means that for each Dj ,
the mean square of the prediction error

ε(k) = yj(k) −

ng
∑

i=1

θijφi(q)uj(k), (8)

is minimized during the estimation of the real-valued
parameters {θij}, i.e. samples of Wi at each pj . In terms
of (8) this minimization is a linear regression for which

Q1, C1, T1

Q2

C2, T2

Tc

h

Fig. 1. Continuous stirred tank reactor.

– under the condition that each Dj is informative – there
exists a unique analytical solution. As a second step we use
interpolation of each {θij}

Nloc

j=1
to obtain estimates of the

functions Wi(p), for instance by assuming a polynomial
dependence or by making use of splines etc. The strength
of the overall approach is that the local estimates can be
obtained in closed loop and the well-worked out results of
the LTI identification framework can be used. A particular
weakness is that transient dynamics of the system for
varying p are often poorly modeled. Alternatively, LPV
identification can be accomplished in the “global” setting,
where (7) is identified based on a data record D with
varying p (see Tóth et al. (2009a,b) for the details).

Choosing the basis functions: To have an an efficient
model structure in terms of (7) with a minimal number
of estimated coefficients, a fast convergence rate of (6)
is required. This corresponds to an optimal selection of
an OBF set {φi}

n
i=1

such that the approximation error
of (7) is minimal w.r.t. the system. In terms of the
local identification, “minimal” corresponds to the span
of {φi}

n
i=1

having the minimal worst-case representation
error (defined via a system norm) for the “local” LTI
aspects of the system (at each operating point). In terms of
the Kolmogorov theory for OBF models (Oliveira e Silva
(1996)), this correspond to the optimization of the pole
locations λ1, . . . , λng

of the OBFs (see (5)) w.r.t. the set
of all possible pole locations associated with the local LTI
aspects. In practice, this is accomplished with a so-called
Fuzzy Kolmogorov c-Max (FKcM) algorithm which, based
on samples of the local pole locations (obtained through
LTI identification of the system at some operating points),
is capable of efficiently solving the optimal OBF selection
problem (see Tóth et al. (2009a)).

5. EXAMPLE

In order to demonstrate the attractive features of the
introduced LPV-OBF identification approach we consider
a simulation example of an ideal Continuous Stirred Tank
Reactor (CSTR) given in Fig. 1. This example describes
the chemical conversion, under ideal conditions, of an
inflow of substance A to a product B where the corre-
sponding first-order reaction is non-isothermal. For con-
trolling the heat inside the reactor, a heat exchanger with a
coolant flow is used. To simplify the problem the following
assumptions are taken:

• The liquid in the reactor is ideally mixed.
• The density and the physical properties are constant.
• The liquid level h in the tank is constant, implying

that the input and output flows are equal: Q1 = Q2.
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Table 1. Variables & constants associated with
the CSTR model and their nominal values.

V Effective volume of the reactor 5 m3

C1 Concentration of the inflow 800 kg/m3

C2 Concentration in the reactor 213.69 kg/m3

Q1 Input flow 0.01 m3/s
Q2 Output flow 0.01 m3/s
k0 Pre-exponential term 25/s
EA Activation energy of the reaction 30 kJ/kg
T1 Inflow temperature 428.5 K
T2 The temperature in the reactor 353 K
Tc Coolant temperature 300 K
ρ Density (assumed to be constant) 800 kg/m3

cρ Specific heat 1 kJ/kg · K
∆H Heat of reaction 125 kJ/kg
UHE Heat transfer coefficient 1 kJ/kg · s
AHE Effective surface of the heat ex-

changer
1 m2

h Level of the liquid in the tank 5 m
R Gas constant 8.31 J/mol · K

• The reaction is first order with a temperature relation
according to the Arrhenius law.

• The shaft work can be neglected.
• The temperature increase of the coolant over the coil

can be neglected.

Using the realistic example of a CSTR given in Roffel
and Betlem (2007), the variables and constants associated
with dynamical behavior of the CSTR are described in
Table 1. In this example Q1 and Tc are used as control
signals as they are the typical manipulatable signals used
to steer chemical reactors in practice. The control goal is
to regulate T2 and C2, so developing a dynamic model that
describes the relation between these signals and the input
variables is needed in terms of modeling. The nominal
values of the variables are given in Table 1, corresponding
to the desired steady-state operation of the process.

5.1 First-principle modeling

Based on first-principle laws, the following nonlinear dif-
ferential equations describe the dynamics of the system:

d

dt
C2 =

Q1

V
(C1 − C2) − k0e

−
EA
RT2 C2, (9a)

d

dt
T2 =

Q1

V
(T1 − T2) −

UHEAHE

ρVcρ

(T2 − Tc)

+
∆Hk0

ρcρ

e
−

EA
RT2 C2. (9b)

As shown in Roffel and Betlem (2007), if the CSTR
corresponding to (9a-b) is operated around the steady
state condition given in Table 1, then the system can
be well approximated with a 2nd order stable LTI model

with inputs u = [ Q1 Tc ]
⊤

and outputs y = [ C2 T2 ]
⊤

.
Based on such a model, a PID controller can be designed
which ensures disturbance attenuation and provides safe
operation of the CSTR around this operating point.

5.2 Motivation for LPV models

Assume that the plant where the CSTR is operated
receives the raw material (substance A) from different
sources. This implies that C1 can have different levels from
50% to 150% of the nominal value. Now apply a 10%
step on Q1 at t = 100s when the plant is operated in

steady state under different C1 levels. The step responses
of the CSTR are given in Fig. 2 in terms of the change
of T2 and C2 w.r.t. the steady state values (for each C1

level). In the dynamical behavior of T2 and C2 we can
observe that both the time constant and relative gain is
changing in the responses for different C1 levels. However,
the most abrupt changes can be observed in T2 where
the relative gain also changes its sign resulting in a non-
minimal phase behavior. The latter is a clear evidence that
a PID controller designed on the nominal behavior can
even destabilize the system if the concentration level of
the input flow grows too high. In such scenarios, where
the change in the operation conditions causes such a
different dynamical behavior, it is important to model
the plant for these different scenarios, possibly with a
LPV model, which is capable to explain all situations.
Therefore, we aim to identify an LPV model of the
process which can describe the dynamical behavior of the
system w.r.t. to different C1 levels as this seems to be
the most important practically relevant problem regarding
this application. Furthermore we only intend to model the
dynamical relationship between Q1, Tc and T2, C2 with C1

used as the scheduling variable p. Thus all other variables
and parameters are assumed to be constant and equal to
their nominal values listed in Table 1.

5.3 Measurements

To generate realistic measurement records of the system,
used for the local identification approach described in Sec.
4, (9a-b) is simulated in continuous-time and DT data
records of C2 and T2 are obtained with a sampling period
Td = 60s. This corresponds to an adequate sampling of the
transient dynamics with 10 samples during a typical rise
time (see Fig. 2). It is also assumed that Q1 and Tc are ma-
nipulated through zero-order-hold actuation synchronized
with the sampling period. Simulations are started from
the steady state of the process and for excitation pseudo
random binary signals (PRBS) are injected into Q1 and Tc

at their nominal values with 10% relative amplitude. Note
that other excitation signals can also be used to generate
informative data sets about the system (see Roffel and
Betlem (2007)). To model noise and disturbances related
to the measurement of T2 and C2, eT2

and eC2
are added to

these signals corresponding to white noise processes with
zero mean Gaussian distribution and variance σT2

= 0.5,
σC2

= 1.5. The 3-σ levels of eT2
and eC2

are approximately
1% of the nominal values of T2 and C2 with an average
Signal to Noise Ratio (SNR) of 20dB for T2 and 30dB for
C2. Under these conditions, 11 local data records Dj with

length Nd = 1000 are gathered for each {400+80j}Nloc=10

j=0

level of C1, corresponding to a gridding of the 50% to 150%
range. Under the same specifications noiseless data records
(with different realization of the PRBS excitation) are also
gathered for validation purposes.

5.4 Selection of the basis functions

In order to get samples of the possible local pole locations
of the system w.r.t. different levels of C1, local DT-
LTI models are estimated based on each Dj . For the
estimation a 2nd order fully parameterized OE model
structure with common denominator and no feedthrough
term is used and the estimates are calculated with the
Matlab Identification Toolbox. Validation results based
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on the noiseless data records are computed in terms of the
Best Fit Rate (BFR) or so-called fit score:

BFR := 100% · max

(

1 −
‖y − ŷ‖

2

‖y − ȳ‖
2

, 0

)

, (10)

where ŷ is the simulated output of the estimated model
and ȳ is the mean of output y of the CSTR. The achieved
rates are given in Fig. 3 with blue ∗, testifying the high
validity of these estimated local models. The resulting pole
locations of the estimated models are given in Fig. 4 with
red ◦. On these estimated poles, the FKcM algorithm is ap-
plied (see Sec. 4) to optimize n = 5 OBF functions. These
basis functions {φi}

5
i=1

will form the model structure in
terms of (7) for the LPV identification of the CSTR. The
optimized pole locations of the OBFs are given in Fig. 4
with blue ×. Performance measures, like the tight best
achievable Kolmogorov bound (see Tóth et al. (2009a))
given in green in Fig. 4, indicate that these basis have a
fast convergence rate, i.e. a negligible representation error
in terms of (7), for the dynamics of the CSTR.

5.5 LPV identification

Based on the data records Dj and the obtained set of

OBFs {φi}
5
i=1

, local samples {θij}
j=1,...,10
i=1,...,5 of the expansion

coefficient functions Wi are estimated via linear regression
in terms of (8). It is well known that LTI models can
only explain the change of T2 and C2 w.r.t. the steady
state values of these variables at each C1 due the fact
that they correspond to the linearization of (9a-b). Thus
these steady state values of T2 and C2 were modeled
as a constant, i.e. trim value. The local samples of the
coefficients Wi and the trim values are interpolated by
using a polynomial approach. By investigating the effect
of order selection for the polynomial interpolation it has
turned out that the minimal required order is 4 while
above 8 no improvement on the approximation error can
be observed.

5.6 Validation

The validation results of the estimated LPV-OBF models
with polynomial interpolation of order 8 and 4 are given
in Fig. 3. These validation results are calculated for a fine
grid {400+8j}Nloc=100

j=0
for the levels of C1 (10 times larger

than used for identification) in order to investigate the
quality of the LPV-OBF models between the interpolation
points. The BFR values in Fig. 3 prove that the identified
LPV-OBF models are valid between the interpolation
points and give accurate local descriptions of the nonlinear
system on the operating range of the CSTR w.r.t. C1. The
resulting polynomial coefficient functions for the Q1 → T2

channel in case of the LPV-OBF model with 8th order
interpolation are given in Fig. 5.

Validation is also accomplished w.r.t. to a varying trajec-
tory of C1 in order to test how well the model describes
the global behavior of the nonlinear plant. The results are
given in Fig. 6. It has been observed that the dependence
of the T2 and C2 trim values w.r.t. to C1 has a delay
of 11 samples for T2 and 23 samples for C2 (dynamic
dependence). It is remarkable that the LPV-OBF model
obtained via local identification of the system is able to
explain the global nonlinear dynamics with a BFR of
97.54%. It is also obvious from Fig. 6, that the error of T2

is dominated by the transient effects caused by the change
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Fig. 2. Change of T2 and C2 when the plant is operated in
steady state with 50% ↔ 150% of nominal C1 and a
10% step is applied on Q1 at t = 100s.
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Fig. 3. Validation results of the identified local LTI models,
given with blue ∗, together with validation results
of the identified LPV-OBF models in terms of BFR
computed for a fine grid of C1 levels: {400 + 8τ}100

τ=0.
The BFR values are given with red for the LPV-OBF
model with 8th order polynomial interpolation, and
with a green dashed line for 4th order.

of C1. In case a data record with varying C1 is available for
identification, then the transient dynamics caused by the
variation of C1 can be easily incorporated into the existing
model via a global identification approach (see Tóth et al.
(2009b)).

6. CONCLUSIONS

This paper demonstrates the strength of an OBFs based
LPV identification approach for modeling nonlinear pro-
cess dynamics. LPV models serve as an intermediate step
between rigorous nonlinear process models and simple
LTI descriptions commonly used in process control. These
models corresponds to a blended structure of a series
of LTI models describing the system efficiently over its
entire operating regime with powerful control synthesis
methods available. The proposed OBF approach gives a
well structured way of obtaining LPV models based on
local measurements of the system around some operating
conditions. The performance of the approach is demon-
strated on a simulation example of a CSTR, showing that
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Fig. 5. Coefficient functions of the estimated LPV-OBF
model with 8th order polynomial interpolation for the
Q1 → T2 channel.

a LPV model that describes the process behavior for dif-
ferent inflow concentrations can be efficiently and cheaply
obtained. Such a model can be used to design a controller
which can operate the plant for raw ingredients purchased
from different sources, providing an efficient and flexible
operation of the plant for various production scenarios.
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