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Abstract: Identification of accurate nonlinear models is central to the success of the nonlinear
model based schemes. Approximation of the nonlinear system dynamics in a multiple linear
model framework has been well addressed in the literature. However, such multimodel decompo-
sition can result in unstable local models. Additionally, the number of local models to be selected
for the nonlinear identification is critically dependant on the partitioning approach. This paper
proposes a novel gap metric based fuzzy decomposition of nonlinear dynamics using multiple,
locally linear models. Such a decomposition is shown to result in a stable and parsimonious
model set which can be deployed for online control. A simulation case study involving nonlinear
polystyrene reactor, is presented to illustrate the proposed approach.
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1. INTRODUCTION

Nonlinear process control methodologies are typically de-
ployed for flexible and improved productivity in polymer,
chemical, paper and pulp industries. These processes often
require product grade transitions to fulfill customer needs
and to seek benefits of market dynamics. Due to require-
ment of such flexible mode of operation, these processes
need to be transited and regulated over a broad range
of operating conditions. The process dynamics change
significantly during such transitions and therefore, the un-
derlying dynamic models used in the controller need to be
updated. These dynamic models represent the dynamic re-
lationship between the manipulated variables (MVs) that
are frequently updated by the controller to regulate the
controlled variables (CVs), in the presence of disturbance
variables (DVs). Due to such a wide range of operating
conditions and frequent grade transitions, the underlying
process dynamics become nonlinear in nature. This non-
linear dynamics can be captured by employing a single
monolithic nonlinear model or by dividing the nonlinear
dynamics into multiple linear or simpler nonlinear models.
Typically, the first principle based models fall under the
first category (single monolithic model) and are very com-
plex , difficult and expensive to build. The use of such a
complex nonlinear model in the NMPC can lead to numer-
ical and computational issues. In some cases, the solution
of the optimisation problem can become infeasible or non
optimal. An alternate attractive approach that can solve
such problems is to decompose the nonlinear dynamics into
multiple linear models and then switch smoothly among
the models based on the current state of the process. In
such a case, the NMPC optimisation problem based on
linearised models becomes better structured and can be

solved in quick time. Due to these benefits, the multiple
model based nonlinear identification strategy looks more
promising and practical.

One approach to multi model decomposition of non linear
dynamics has been proposed by Wojsznis et al. (2005) .
The approach performs interpolation between local model
parameters based on some heuristics and model valid-
ity measures. However, the heuristic based approach is
not good enough for a wide variety of applications. The
method also assumes homogeneity of the local models and
linear interpolation of the model parameters. An alter-
nate approach is proposed by Narendra and Balakrish-
nan (1997). However, this approach assumes availability
of knowledge of various operating regions, their ranges
and their centres. Skarmeta et al. (1999) have proposed a
fuzzy classification based multi model decomposition ap-
proach. However, this approach does not consider stability
analysis in selecting the optimal number of local models.
Galan et al. (2003), have applied the stability analysis
in selecting the optimal number of local models in their
paper. However, in this approach the local models are
not obtained via data based modeling but are developed
using linearization of first principle based model. Venkat
et al. (2003) have proposed a strategy for building mul-
tiple local linear/simpler nonlinear models based on an
analysis of the dynamic input—output data obtained by
plant perturbation. Gugaliya et al. (2005) have proposed
a Fuzzy-CART based multimodel development strategy
based on dynamic plant data classification. In most of
the above strategies, the focus on the development of a
smooth switching strategy has not been considered for
the selected local models. Additionally, the closed loop
stability considerations are missing while developing this
set of local models.
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Specifically , for the multiple models based identification
approach, the model identification procedure has to ad-
dress many issues, primary amongst them are i) Selection
of number of local models, ii) Development of the local
models, iii) Switching strategy between the models when
the models are deployed online and iv) Closed loop stabil-
ity when the model switching is done. This later aspect of
closed loop stability is very important issue in determining
the controller performance when these set of models are
deployed for online control.

This paper explicitly uses stability considerations in parti-
tioning/decomposition of the nonlinearity. Since the local
models would be used in closed loop control, it is of high
importance to ensure that the models along with the local
controller provide for closed loop stability. This paper pro-
poses the use of the gap metric which measures the relative
stability of dynamic models from a closed loop stability
viewpoint. This metric is therefore explicitly suited for use
as measure of overall closed loop stability in a multimodel
context and is therefore exploited in this paper. Earlier
approaches towards decomposition of nonlinearity ignored
this stability aspect and therefore are relatively prone to
yield models that could provide a cause of instability. This
paper also contributes in combining the fuzzy-classification
based multimodel decomposition of nonlinear dynamics
method with the gap metric based model set reduction
method. Together, this combination provides a smooth
switching strategy and ensures a parsimonious and robust
model set to be deployed for online control.

This paper is organised as follows : Section 2 explains in de-
tail the fuzzy classification based multiple model approach
towards nonlinear identification. Section 3 explains the gap
metric based model set reduction step. Section 4 illustrates
the polystyrene case study with representative results.
Section 4 summarises the work and provides pointers to
the future work.

2. FUZZY CLASSIFICATION BASED LOCAL
MODEL DEVELOPMENT

The central principle of most fuzzy based partitioning
schemes is to adopt a divide and conquer strategy, i.e.
partition the complex nonlinear dynamics into simpler lo-
cal models. Towards this objective the nonlinear processes
are first perturbed in all the possible operating regimes
and the corresponding dynamic data is then utilised to
develop multiple local linear or simpler nonlinear models.
The overall architecture of the approach is represented in
Figure 1 which clearly depicts the various steps involved
in the proposed approach.

In the sequel, each of the blocks in the above architecture
will be briefly elaborated upon.

Excitation signal design: The nonlinear process needs
to be perturbed over a broad range so that the nonlinear
dynamics are excited across all the operating regimes of
the process. The accuracy of these identified dynamics
strongly depend on the quality of the excitation signals
employed for perturbing the process. The identification ex-
ercise is a time consuming and expensive step and therefore
these excitation signals need to be carefully designed. For
nonlinear identification, the excitation signals need to have
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Fig. 1. Archietcture of the Proposed Approach

a spectra of amplitudes (multilevel signals) as well to cap-
ture the process nonlinearity. Typically staircase signals
or multi-sine signals are known to have this feature. More-
over, the PRBS or GBS signals can be modified to have
multiple levels (Godfrey, 1993). Any of these signals can
be used for nonlinear process identification. The amplitude
band for these signals is decided by the range of dynamics
that needs to be identified and the dominant process gains.
The frequency band of these signals is decided by the range
of time constants of the process over the intended range of
process operation. It is recommended to perturb multiple
MVs simultaneously to reduce the identification test time
as well as to capture plant directionalities . However,
the process safety considerations must be respected while
perturbing multiple MVs simultaneously. The guidelines
for the signal design can be refined and corrected by model
validation tests.

Data Cleaning: The plant data comprising the MV-DV-
CV variables is subjected to data cleaning operation. The
data cleaning operation typically involves outlier removal,
data pre-filtering (for suppressing process noise) and data
scaling. The cleaned plant data is then partitioned into two
data sets namely training data set and validation data set.
The training data set is used for local models development
and the validation data set is used for testing the validity of
the identified models. Typically, 60% of data points can be
used for model development and 40% of data points can be
used for model validation. This split ratio can differ from
case to case.

Dynamic Clustering Space (DCS) selection: The
cleaned process data needs to be partitioned to generate
the multiple linear models. Such partitioning has to be
carried out in an appropriate data space comprising of
different lags of the MVS, DVS and CVs, so that the
dynamic behaviour is captured properly. Such data space
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is defined as dynamic clustering space (DCS). The choice
of DCS is dependent on presence of delays and nature of
the dynamics of the local regions. Various DCS selection
strategies have been explained in detail by Venkat et al.
(2003).

Dynamic data clustering: The DCS selected by the
earlier step is used to modify the MV-DV-CV data, so
that each row of the new data matrix represents a point
in the clustering space. The modified dynamic data is
subjected to fuzzy clustering algorithm. The objective of
the algorithm is to identify the local regions wherein a lin-
ear/simple nonlinear model can be fitted. This algorithm
enables the division of the complex nonlinear spaces into
elementary subspaces. This algorithm also ensures overlap
of the subspaces for representing the nonlinear behav-
iour in transition regions. The data points having similar
dynamic relationship are clustered together. There are
well known fuzzy clustering algorithms, namely Gustafson-
Kessel algorithm and Fuzzy C means clustering (FCM).
However, these algorithms have been shown to potentially
yield suboptimal solution. Therefore, it is desirable that
the fuzzy clustering is to be carried out in a Monte Carlo
framework. Monte Carlo simulations can be generated by
running this algorithm using different initial guesses of the
initial membership matrix, due to which the chances of
locating the globally optimal partition can be improved. It
should be noted that the number of clusters to be identified
(c) has to be provided to the fuzzy clustering algorithm.
However, in practical situations, this information is not
available apriori. In this paper, the fuzzy clustering algo-
rithm is initiated with large number of clusters (roughly
1
20

th
of the data size) and then the cluster merging is done

at a later stage based on the criteria of parsimony and
stability.

Local model development: The aforesaid clustering al-
gorithms provides c clusters along with the corresponding
partition matrix for each cluster. In this step the local
models are developed within each cluster. Towards this
model building step, data points with degree of member-
ship value greater than a fixed threshold are considered
for each cluster. This enables filtering out of the noisy
data points and thereby considering those data points
which are relevant to the cluster. Model order selection
has to be judiciously carried out to develop good quality
models. This can be done using AIC (Akaike Information
Criterion) or any similar criterion. Otherwise, a series of
model orders can be chosen and the local model that
provides the best prediction capabilities can be chosen as
the local model order. The parameters of the local model
can be identified by the least squares method.

Compositions of local models to obtain aggregated
output: The predictions out of the c locally linear models
obtained in the earlier step need to be suitably aggregated
so as to predict the actual output of the system. When
the system is operating in the region corresponding to a
cluster, the model corresponding to this cluster is utilised
for prediction. When the system is in transition phase,
then a suitable combination of the local model predictions,
is utilised to predict the system dynamics. These local
model predictions are combined based on the degree of
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Fig. 2. Composite Prediction Mechanism

membership of the current state to each of the individual
cluster.

Figure 2 depicts the calculation of the aggregated output.

3. GAP METRIC BASED MODEL REDUCTION

As discussed earlier, the fuzzy clustering is done with a
large number of clusters so that the prediction error is
minimal. However, the selection of the actual number of
clusters has to be done judiciously. If a large number of
clusters are selected, the composite prediction model will
capture the process nonlinear behaviour very well (low
prediction error). However, such a composite model com-
prising large number of local models, is difficult to deploy
for controller design. The maintenance of the controller
also becomes prohibitively complex.

Therefore, it is necessary to reduce the number of models
so that the underlying controller becomes simple. For the
case of large number of models, the models so identified
are also relatively similar to each other, and there is scope
for merging of some of the models without significantly
affecting the prediction quality of the composite models.
However, merging of the clusters has to be done while
keeping in view the intended end use of the models i.e.
closed loop control. Therefore, the decision step of selec-
tion of optimal number of clusters has to simultaneously
consider both closed loop stability issues and prediction
error based model quality issues. Towards the closed loop
stability issues, gap metric based approach is proposed
in this paper. The Gap metric (Georgiou, 1988) provides a
measure to calculate the distance between the two dynamic
systems from a closed loop stability view point. Typically
the gap metric for two SISO dynamic models P1 and P2
can be calculated as :

δ(P1, P2) = sup
ω

|P1(jω)− P2(jω)|q
1 + |P1(jω)|2

q
1 + |P2(jω)|2

(1)

where 0≤ δ ≤ 1, P1(jω) and P2(jω) represent the fre-
quency responses of the system P1 and P2 respectively. A
value of δ close to 0 represents that the two models are
similar and can be merged whereas value of δ close to 1
indicates that the two dynamic models behave differently
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when placed in a control loop. Merging of such models
(having δ close to 1) can result in closed loop instability.
Since model discrimination is enabled by the gap metric
criterion, from the closed loop stability perspective, it is
therefore meaningful to use this criterion while assessing
the number of local models. Here we propose the model
set reduction using gap metric analysis for data cluster
merging be applied after the model set reduction using
prediction error. Therefore, at the end of these two steps,
it is expected that a set of models satisfying the prediction
error and gap metric criteria will be obtained.

Gap metric analysis for cluster merging : In this paper, the
fuzzy clustering algorithm is initiated with large number
of clusters (roughly 1

20 th of the data size). The fuzzy
classification algorithm then partitions the dynamic data
into multiple clusters. The data in each cluster is then
used to develop the local model. Model order selection
has to be judiciously carried out to develop good quality
models. This can be done using AIC (Akaike Information
Criterion) or any similar criterion. Otherwise, a series of
model orders can be chosen and the local model providing
best prediction capabilities can be chosen as the local
model order. The parameters of the local model can
be identified by least squares method. The gap metric
analysis is performed on the series of local models to
compute the gap matrix (G) of dimension c×c, wherein
Gi,j entry represents gap metric value between model i
and j respectively. The diagonal entries in the G matrix
will be zeros and G matrix will be symmetrical in nature
as Gi,j = Gj,i.

Once the G matrix is computed, the matrix is scanned
for models which can be merged. A threshold value of
δ (δthreshold) is chosen based on the stability sensitivity
of the nonlinear process under consideration. Typically
the threshold value of δthreshold varies between 0 to 0.5
where threshold value 0 indicates no model merging case
and progressively increasing values towards 0.5 indicates
relatively relaxed stability norm consideration for model
merging. Based on the value of δthreshold, the set of local
models to be merged are identified. The local data in
the corresponding clusters are merged and the model
parameter identification is performed on the merged data
set to get a new local model. The new local model replaces
the merged models and the membership value of a data
point to the the new local model is the sum of membership
values of the data point to the merged models. Using the
updated membership function, the composite prediction
of the merged model set is computed on a validation data
set.

Prediction error analysis for cluster merging : As discussed
in the above step, the composite prediction error of the
reduced set of the models is computed on the validation
data set. The composite prediction error of the full model
set (prior to model reduction step) is also computed
on the validation data set. The difference between the
two prediction errors is computed and compared with
the threshold for prediction error analysis. The criterion
on prediction error threshold can be chosen in terms of
certain percentage deviation of prediction error from the
full model set case. If the increase in prediction error due
to the model reduction step is below the threshold value,
the model merging is accepted. Otherwise, the threshold

on the gap metric analysis (δ) is tightened and the model
merging is iterated. This procedure is iterated till the
criteria based on gap metric threshold and prediction
error threshold are satisfied simultaneously. In the next
Section we validate the proposed approach on a nonlinear
simulation case study.

4. RESULTS AND DISCUSSION

The nonlinear process used for this study is the contin-
uously stirred tank reactor (CSTR) wherein polymeriza-
tion of styrene to polystyrene takes place (Tatiraju &
Soroush,1999). The simplified process flow sheet is shown
in Figure 3. The process model for the polymerization
of styrene in a jacketed continuous stirred tank reactor
(CSTR) involves reaction kinetics, a material balance and
an energy balance. The CSTR has three feed streams-
pure styrene monomer, azobisisobutyronitrile (AIBN) ini-
tiator dissolved in benzene and pure benzene(solvent). The
cooling jacket uses water as the cooling fluid to remove
heat generated by the exothermic polymerization. There is
one exit stream containing polymer, un-reacted monomer,
initiator and solvent. The model for the polymerization
includes following set of Equations,

d[I]

dt
=
(Qi[If ]−Qt[I])

V
− kd[I] (2)

d[M ]

dt
=
(QM [Mt]−Qt[M ])

V
− kp[M ][P ] (3)

d[T ]

dt
=

Qt(Tf − T )

V
+
−∆Hr

ρCp
kp[M ][P ]−

hA

ρCpV
(T − Tc)

(4)

d[Tc ]

dt
=

Qc(Tcf − Tc)

Vc
+

hA

ρcCpcVc
(T − Tc) (5)

P =

∙
2fkd[I]

kt

¸1/2
(6)

The CSTR case study is shown to be highly nonlinear
and complex from control perspective. The various con-
stants for the process model can be found in Hidalgo
and Brosilow (1990). There are two manipulated variables
(MVs) namely the initiator flow rate and coolant flow
rate and two controlled variables (CVs) namely the re-
actor temperature and monomer conversion. In order to
perform identification using the approach proposed in this
paper, CSTR is perturbed with the multilevel excitation
signals. The corresponding process data is subjected to
fuzzy classification as depicted in Figure 1. The DCS is
selected as past two lags of inputs and one lag of output.
The fuzzy clustering algorithm is initiated with 8 clusters
and the dynamic data in each cluster is modelled using
ARX structure. The results of the composite predictions
using these models are shown in Figure 4. The gap metric
matrix G for these 8 models is computed and is depicted
in Equation 7,
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0.8 0.68 0.62 0.59 0.38 0.25 0.29
0.8 0 0.39 0.09 0.55 0.92 0.79 0.61
0.68 0.39 0 0.35 0.51 0.61 0.55 0.75
0.62 0.09 0.35 0 0.65 0.66 0.48 0.85
0.59 0.55 0.51 0.65 0 0.72 0.42 0.76
0.38 0.92 0.61 0.66 0.72 0 0.35 0.19
0.25 0.79 0.55 0.48 0.42 0.35 0 0.21
0.29 0.61 0.75 0.85 0.76 0.19 0.21 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Q Quantity
A Heat Transfer area of CSTR
Cp Mean heat capacity of reactor fluid
Cpc Heat capacity of cooling jacket fluid
f Initiator efficiency
h Overall heat transfer coefficient
I Concentration of initiator in reactor
If Concentration of initiator in feed
kd Ad.Exp(−Ed/T )Sec

−1

kp Ap.Exp(−EP/T )mol−1Sec−1

kt At.Exp(−Et/T )mol−1Sec−1

M Monomer concentration in reactor
Mf Monomer concentration in feed
Qi Flow rate of initiator stream
Qc Flow rate of cooling jacket fluid
Qm Flow rate of monomer stream
Qt Flow rate of exit stream (Qi+Qs+Qm)
t Time
T Temperature of Reactor
Tc Mixing cup of cooling jacket fluid
Tcf Inlet temperature of cooling jacket fluid
Tf Temperature of reactor feed
V Reactor volume
-∆Hr Heat of polymerisation reaction
ρ Mean density of reactor fluid
ρC Density of cooling jacket fluid

After this step, the gap metric analysis is applied on this
set of 8 models with δthreshold =0.1 and PEthreshold = 5.
It was seen that models belonging to clusters 2 and 4 got
merged based on the gap metric analysis and total number
of models was reduced to 7. The composite prediction
using these 7 models is shown in Figure 5. If the closed loop
stability criterion is relaxed by setting δthreshold =0.4 and
PEthreshold = 9, then it is seen that the models belonging
to clusters 1,6,7 and 8 get merged into one model; also
models belonging to clusters 2,3 and 4 get merged into
another composite model. It was also seen that the model
belonging to cluster 5 was not similar to any other model in
the set. Ultimately, these iterative steps resulted in 3 linear
models whose composite prediction is shown in Figure
6. Interestingly, the root mean square error (RMSE)
for the cross validation increased from 4.64 to 8.3 when
the number of models used in the composite prediction
reduced from 7 to 3. Thus it is seen that the choice of the
number of partitions need to be judiciously made based
on considerations of both prediction error parsimony and
stability.

5. CONCLUSIONS AND FUTURE WORK

This paper proposes a combination of fuzzy classification
based multimodel identification strategy with a gap metric
based model set reduction strategy. Together, this combi-
nation yields a parsimonious and stable model set which

Fig. 3. Polystyrene Case Study

Fig. 4. Temperature Prediction using 8 Linear Models
(RMSE = 4.24)

Fig. 5. Temperature Prediction using 7 Linear Models
(RMSE=4.64)
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Fig. 6. Temperature Prediction using 3 Linear Models
(RMSE = 8.3)

can be used effectively for online control. The application
of the proposed methodology on a polystyrene reactor
has shown the efficacy of the proposed approach. As the
next step the clear guidelines for the specifications of the
threshold selection criterion for both the prediction error
and gap metric in the model set reduction step, need to be
established. The future work should also focus on combin-
ing the gap metric based approach with other clustering
techniques, as well as extending the approach to include
the nonlinear gap metric criterion proposed by (Bian and
French, 2005).
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