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Abstract This work studies the identification and control of circulation fluidized bed (CFB) boilers. The CFB boiler 

under investigation shows strong nonlinearity due to big changes of steam load. A linear parameter varying (LPV) 

model is used to represent the process dynamics and used in control. The steam flow is used as the working-point 

variable (scheduling variable) of LPV model. Multivariable plant tests were carried out and a LPV model and a linear 

model were identified. The identification results of the industrial CFB boiler show that the LPV model has much 

higher accuracy than the linear model. The simulation studies for the MPC control of the CFB boiler have been 

performed using both the LPV model and the linear model. The simulation results show that the MPC using the LPV 

model performs better than the MPC using the linear model.  
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1. INTRODUCTION 

Most industrial process systems are nonlinear. Because it is 

difficult to identify accurate models of nonlinear system, 

approximate linear models are used in most of industrial 

controllers, which may lead to lower control performance. It 

is important to develop simple and practical method for 

nonlinear process modelling and identification; and use these 

models for the control of nonlinear processes. 

In nonlinear system identification, nonlinear AR(MA)X 

models, neural-networks models are often used. These 

models are complex in structure and difficult to compute 

numerically. Block-oriented nonlinear models such as 

Hammerstein models and Wiener models are simpler, but 

they can only model nonlinearity in static gains which is 

often too limiting in process control applications.  

Linear parameter varying (LPV) models are used in process 

identification. In process control, there are several advantages 

using the LPV models: 1) they are simple to identify; 2) they 

can model both static and dynamic nonlinearities; and 3) they 

can take into account the process operation knowledge in 

selecting the working-point variables (scheduling variables). 

The terminology of LPV was first introduced by Shamma and 

Athans (1991) in the study of gain scheduling control. 

Applications of LPV (or gain scheduling) control have been 

reported in the control of electro-mechanical systems by 

Rugh and Shamma (2000). Several LPV model identification 

and control algorithms are developed in the literature. Among 

others, multiple-model approaches are studied in Murray-

Smith and Johansen (1997); deterministic-stochastic subspace 

approach is studied in Santos (2007); and orthonormal basis 

functions are used in Tóth et. al. (2009). Zhu and Xu (2008) 

proposed an LPV model in the form of blended linear models; 

Zhu and Ji (2009) proposed an LPV model as another form of 

blended linear models. 

In this work, we take circulation fluidized bed (CFB) boiler 

as the research object and put forward its modeling and 

simulation method based LPV model and MPC technology. 

In Section 1 of this paper, the identification and calculation 

strategy of LPV model are introduced; in Section 2, the 

modeling and simulation control method of circulation 

fluidized bed based on LPV model is discussed; Section 3 

analyzes the simulation and control effectiveness; Section 4 

is the conclusion. 

2. LPV MODEL IDENTIFICATION 

Recently, Zhu and Xu (2008) have developed a simple LPV 

model identification method. The method is described briefly 

for a multi-input single-output (MISO) process; for a multi-

input multi-output (MIMO) process, the procedure can be 

repeated for each output. Let y(t) denote the process output at 

discrete time t, u(t) the input vector at time t. Denote variable 

w(t) as the working-point variable (scheduling variable) 

which determines the working point of the process operation. 

Here w(t) is a measured variable from the process or can be 

calculated from measured process variables:  

( ) [ , ]lo hiw t w w∈  

where 
lo

w and
hi

w are the low and the high limits of w(t). 

Assume that several, say three, linear models can be 

identified from corresponding working-points. Denote the 

three linear models at three working points as 
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where ˆ ( )i

jG q is a linear transfer function, 1q−  is the unit delay 

operator, m is the number of inputs and  

1 2 3lo hiw w w w w≤ < < ≤  

Then the LPV model of the process based on the three linear 

models is given as model the process in the operating-

trajectory as follows 
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where )(1 wα , )(2 wα  and )(3 wα  are weights which are 

functions of the working point variable w(t), the variable v(t) 

is the unmeasured disturbance.  

 

The procedure to identify the LPV model (2) consists of 2 

steps: 

 

Step 1: Identify the linear models in (1) using the data close 

to its corresponding working points. When the process 

can be tested at each working points, linear models can be 

easily obtained using a linear model identification method. 

When the working point variable varies continuously and 

no working-point test can be carried out, as in the case of 

the CFB boiler, then the test data need to be sliced into 

pieces and the data slices close to a working-point will be 

used to identify the corresponding linear model. 

Step 2: Determine the weighting functions )(1 wα , )(2 wα  and 

)(3 wα . The easiest way to determine the weighting 

functions is to use so called triangular weights which is 

pre-assigned and need no estimation; another way is to 

use cubic splines as weights. In this case, data are needed 

to estimate the parameters and the data should contain 

both working point tests and transition tests; see Zhu and 

Xu (2008). 

 

The LPV model using the triangular weights is given as: 
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For cases where no working-point tests are permitted such as 

batch processes, Zhu and Ji (2009) have proposed a different 

model. Applying the weightings on the input side one obtains: 
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Note that this model is in general different from (3). However, 

for slowly changing w(t), the two models will be 

approximately equal. Moreover, pre-determined triangular 

weighting functions will be used in model (4). Therefore, the 

identification of the LPV model (4) using the pre-determined 

triangle weighting functions becomes a linear identification 

problem using multiple sets of weighted inputs. 

3. IDENTIFICATION OF A CFB BOILER 

In order to verify the usefulness of the simple LPV models (3) 

and (4) in modelling and control of industrial nonlinear 

processes, an industrial CFB boiler is used in the case study. 

The CFB boiler is a 35 t/h boiler and is located in Xiamen, 

China. This boiler uses coal as its main fuel, burning in the 

circulation fluidized bed, and its final product is steam. The 

boiler is basically controlled manually except that the steam 

drum level is controlled by a PID loop.  

An MPC (model predictive control) project was initiated in 

order to realize the automatic control of the boiler. The main 

inputs (or manipulated variables, MVs) are coal feeder speed, 

primary air, secondary air, and fuel retain air; the main 

outputs (or controlled variables, CVs) are furnace 

temperatures, furnace pressures, flue gas O2, steam 

temperature and steam pressure; the measured disturbance 

variable (DV) is the steam flow. The sampling time of the 

MPC controller was chosen as 30 seconds. 

In order to generate informative data, identification tests have 

been carried out where test signals were added at the process 

inputs during normal operation. Generalized binary noise 

(GBN) signals (Zhu 2001, Chapter 3) are used as test signals 

and small amplitudes are used. The test lasted four days. The 

test signals do not disturb normal operation of the CFB boiler. 

 
Fig.1 Steam flow during a 4 day period 

 

3.1 Working Point Variable 

The steam flow consumed by the users can change from 6 t/h 

at night to 25 t/h during day time; see Fig. 1. This huge 
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fluctuation changes the combustion reaction in the furnace, 

and thus changes the behaviour of the process. So, the steam 

flow will be used as the working-point variable.  

Using the steam flow as the working point variable, the 

production process is divided around two working points:  

- low load working point at w1 = 8.5 t/h 

- high load working point at w2 = 16.4 t/h 

 

So the obtained LPV model will be the summation of two 

linear models.  

 

3.2  LPV Model Identification 

Denote the identified MIMO linear modes of the two 

working-points as: 
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where p is the number of controlled variables (CVs) and m is 

the number of manipulated variables (MVs). 

 

Then the LPV model (3) using the two working-points is 

given as 
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where 

1( )wα  and 
2 ( )wα  are the triangular weighting 

functions: 
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The data sequences of the four day test can be divided into 

seven parts or data slices according to the value of steam flow 

(Fig. 1), namely 4 slices are low load data and 3 slices are 

high load data. The low load data slices are used to identify 

the low load model (5); the high load data are used to identify 

the high load model (6); and finally the LPV model of the 

CFB boiler is given as in (7). The linear models are identified 

using the ASYM method (Zhu, 2001, Chapters 7). 

Not all the identified input/output models are used to form 

LPV model. When the disturbance level is high, some models 

have very poor quality and can have wrong signs in their 

gains. We ensure that the signs of the model gains agree with 

the process knowledge and when a model gain has the wrong 

sign, that model is set to zero.  

Based on the process knowledge, one can determine the signs 

of model gains. The following corresponding relations were 

investigated: 

• Relations between coal feeder speed and lower furnace 
temperature: if coal feeder speed increases, the bottoms 
furnace temperature would firstly decrease and then 
increase. Referring to the thermal principle, raw coal will 
absorb heat when it initially entered the furnace; then fuels 
begin to burn and release heat gradually, bringing furnace 
temperature higher. 

• Relations between total air volume and furnace 
temperature: if total air volume increases, furnace 
temperature will firstly increase fast and then decrease 
slowly. Referring to the thermal principle, increasing air 
volume will increase oxygen concentration and speed up 
burning rate when it initially entered the furnace; for the 
air temperature is low and it will carry away the heat, 
finally, the furnace temperature will decrease. 

• Relations between recycles and furnace temperature: if 
recycles increase, boiler furnace temperature will decrease, 
but the upper furnace temperature will increase. Referring 
to the thermal principle, increasing circulating materials 
will lead to decreasing combustion temperature, especially 
when the materials temperature is low. 

• The changing trend of output steam temperature and upper 
furnace temperature are the same. Analyzing the boiler 
structure, heat exchangers are installed on upper boiler, so 
the change of upper furnace temperature will directly 
affect output steam temperature. 

In table 1 we compare the gains of some models of high and 

low loads. 

Table 1. Gain Comparison of High/Low Load Models 

MVs (Gain of High/Low Load Model)  

CVs  Primary 

air 

Retain air Coal 

feeding 

Flue gas O2 2.19/1.75 0.16/1.71 0/0 

Steam pressure -0.5/0 0.3/0.14 0/0 

Steam temp -24.0/-6.27 25.0/17.6 0.3/0.28 

Furnace 

pressure 

0.2/0 0.1/0 0/0 

Furnace bott 

temp 

8.8/17.9 -13.9/-9.4 0.5/0.45 

 

For comparison, a linear model was identified using the total 

data set.  
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The LPV model and the linear model are simulated using the 

test data and the simulated outputs are compared to the 

measured outputs. In Fig. 2, four of the controlled variables: 

furnace pressure, steam pressure, furnace bottoms 

temperature and steam temperature, are plotted. One can see 

the LPV model outputs fit the measured outputs much better 

than those of the linear model. 

 

Fig. 2. Simulated outputs of linear model (green lines), of the 

LPV model (red lines) and measure outputs (blue lines) 

 

4. MPC CONTROL SIMULATIONS OF THE CFB 

BOILER 

Model predictive control (MPC) refers to a class of computer 

control algorithms that utilize an explicit process model to 

predict the future response of a plant. At each control interval 

an MPC algorithm attempts to optimize future plant 

behaviour by computing a sequence of future manipulated 

variable adjustments; see Qin and Badqwell (2003). Several 

studies of MPC for LPV model were proposed, a method 

based on a parameter-dependent control law was studied in 

Yu et.al. (2009), LEE and WON (2006) proposed a new 

robust MPC technique for LPV systems and nonlinear MPC 

based on the LPV model was proposed in Xu et.al. (2009) .In 

this paper, an MPC control algorithm was used to control 

CFB boiler. The algorithm consists of three steps: prediction, 

steady state optimization and dynamic control; see Zhu et.al. 

(2008). In the algorithm, if not enough degree of freedom is 

available, CV priorities and/or weightings will be used to 

resolve the conflict; when there are degree of freedom left 

after meet all CV control requirements, economic 

optimization will be performed. The economic optimization 

is realized by using combined LP (linear programming) and 

QP (quadratic programming): 
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Where u is the vector of MVs, y is the vector of CVs, IRVu  is 

the vector of MV IRVs (ideal resting values), IRVy is the 

vector of CV IRVs, wu is the diagonal matrix of MV QP 

weightings, wy is the diagonal matrix of CV QP weightings, 

b1 is the vector of MV LP weightings, b2 is the vector of CV 

LP weightings, G is the model gain matrix, d(t) is the bias at 

sample time t, ymin and ymax are the vectors of CV low limits 

and high limits respectively, and umin and umax are the vectors 

of MV low limits and high limits respectively. 

The dynamic control part of the MPC algorithm uses the 

prediction values and process model to calculate the MV 

control actions that will drive the process to its steady state 

which is determined by the steady state optimization. The 

dynamic control calculation is again a QP: 
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Where vector y
ref

(t) is the vector of desired CV closed-loop 

response trajectories, vectors y
*

 and u
*

 are the steady state 

values of CVs and MVs respectively obtained by steady state 

optimization, P is the prediction horizon, M is the control 

horizon, Q is the diagonal matrix of CV weightings, R is the 

diagonal matrix of MV weightings, and S is the diagonal 

matrix of MV increments weightings. 

The LPV model plays two roles: 

1)  In the prediction part, the LPV model is used; 

2)  In the economic optimization (8) and dynamic control (9), 

the weights wu, wy, Q, R and S are no longer constants but 

functions of the working-point variable w(t). First, these 

weights are determined at the same working points as the 

linear models (5) and (6). Then they are interpolated in 

the same way as the LPV model in (7).  

Because the working-point variable steam flow is a 

disturbance variable (DV), the economic optimization (8) and 

dynamic control (9) can be solved using a QP which are the 

same as in linear MPC. However, if the working-point 

variable is an input (MV) or an output (CV), than a 

sequential-QP (SQP) should be used in (8) and (9).  

The main control objectives are: 1) automate the operation; 2) 

stabilize the production; 3) reduced the coal consumption; 

and 4) reduce the NOx.   

A software package has been developed that performs LPV 

model identification and MPC control using the LPV model. 

The LPV model of Section 3 was obtained using the software. 

Now the MPC control will be simulated using the software. 

In the simulation, the measured steam flow is used as the 

disturbance. In the simulation, the control objective is to keep 

important CVs as close to their setpoints as possible, namely 

to stabilize the operation.  
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Simulated MPC controls using the LPV model and the linear 

model have been performed and their results are plotted in 

Fig. 3. One can see that the performance of the LPV model 

MPC is much higher than that of the linear model MPC. 

Fig.4 is the control signals of LPV model, and Table 2, Table 

3 are the parameters of MPC control. Steam pressure and 

steam temperature are the most important CVs, we set their 

priority weight at 1 to ensure their control precision; a 

constant furnace bottom temperature guarantees safe 

production, so set its control strategy at "set point", that is to 

control its value as close to 980 
o
C as possible. The error 

weight and other weights of MVs and CVs can be calculated 

by their standard deviation and engineering experience. 

Work is on the way to commission the developed MPC 

controller for the CFB boiler. In the above control objectives, 

the automatic operation of MPC has been achieved and 

control effect is good if the steam flow consumed by the 

users changes not great, but we have not got the data of coal 

consumption and NOx now. Because the great change of 

steam flow of the CFB boiler effects the precision of model 

and control, our next work is to increase the number of linear 

models which to be calculated LPV model. Results of 

simulation showed this method can efficiently reduce model 

output error. The economic optimization is also under 

consideration. 

 

Fig.3 Simulation of MPC controllers using measured steam 

flow as disturbance (DV). CV setpoints are green lines; CVs 

of LPV MPC are red lines; CVs of linear MPC are blue lines 

 
 

Fig. 4. Control signals 

 

Table 2. Design of MPC Control for CVs 

 

CVs Control  

strategy 

Set 

point/Range 

Error 

weight 

Priority 

weight 

Steam 

pressure 

Range 2.2-2.6 mPa 1.56 1 

Steam 

temp. 

Range 400-440 
o
C 0.39 1 

Furnace 

pressure 

Range 4.6-7.0 Pa 5.07 2 

Furnace 

bott. 

temp 

Set 

point 
980 

o
C 0.5 2 

� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � Table 3. Design of MPC Control for MVs 

 

MVs Increment 

weight 

IRV Error weight 

Retain air 0.7 8.89 0.7 

Air-

induced 

2.75 26.67 2.75 

Primary air 3.18 32.94 3.18 

Coal 

feeding 

0.005 150 0.002 

5. CONCLUSION 

This work reports an application of LPV model identification 

and MPC control to an industrial CFB boiler. Due to huge 

changes of steam load, the process shows strong nonlinearity. 

The use of a simple LPV model identification and MPC 

control has achieved much higher model accuracy and higher 

control performance than using a linear model. The case 

study shows that the LPV model has good approximation 

power in modelling industrial processes and it is easy to use 

in MPC control. Batch processes often show strong 

nonlinearity. The authors believe that the LPV models can be 

used for the identification and control of batch processes, for 

a batch process, its operating trajectory is its recipe or 

operation curve carried out to produce a product. 
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