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Abstract: This work focuses on the study of the dynamic behavior and lattice size dependence
of the surface root-mean-square slope in a porous thin film deposition process taking place
on a triangular lattice. The simulation results indicate that the expected mean slope square
reaches quickly a steady-state value and exhibits a very weak dependence with respect to lattice
size variation. The simulation findings are corroborated by an analysis of appropriate finite-
difference discretizations of surface height profiles computed by an Edwards-Wilkinson-type
partial differential equation that can be used to describe the dynamics of surface height profile
in the thin film deposition process under consideration.
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1. INTRODUCTION

Photovoltaic cells (solar cells) constitute an important
source of sustainable energy. However, the limited conver-
sion efficiency of the solar power prevents the wide appli-
cation of solar cells, including thin-film silicon solar cells.
Research on optical and electrical modeling of thin-film
silicon solar cells indicates that the scattering properties
(light reflectance and transmittance) of the thin film in-
terfaces are directly related to the light trapping processes
and the efficiency of thin-film silicon solar cells (e.g., Krč
et al. (2003); Müller et al. (2004)). For example, a higher
diffused transmittance of incident light is desired for the
upper surface of solar cells for a maximum energy input
into the semiconductor layers. The scattering properties of
the interfaces depend strongly on the film surface morphol-
ogy, which includes root-mean-square (RMS) roughness
and RMS slope (Vorburger et al. (1993)). Thus, for the
purposes of improving the conversion efficiency of thin-
film solar cells, desired film surface RMS roughness and
slope levels should be attained during the manufacturing
process.

Kinetic Monte Carlo (kMC) methods have been widely
used to simulate thin film microscopic process by utilizing
microscopic film growth processes and kinetics that are
obtained from molecular dynamic simulations and experi-
ments (Levine et al. (1998); Zhang et al. (2004); Levine and
Clancy (2000); Lou and Christofides (2003); Christofides
et al. (2008)). However, the high computational cost that
kMC simulations require prevents their use for real-time
monitoring and control purposes. Alternatively, stochastic
⋆ Financial support from NSF, CBET-0652131, is gratefully ac-
knowledged. Panagiotis D. Christofides is the corresponding author
(e-mail: pdc@seas.ucla.edu).

differential equation (SDE) models can be used in the mod-
eling of surface morphology of thin films to describe the
evolution of surface height profiles and surface roughness
in a variety of thin film preparation processes (Edwards
and Wilkinson (1982); Kardar (2000)). Recently, modeling
and control of thin film microstructure using SDE models
has attracted significant attention (Ni and Christofides
(2005); Christofides et al. (2008); Hu et al. (2009b,d,c)).
However, the dynamics and control of RMS slope of surface
height profiles in thin film deposition processes has not
been studied.

This work focuses on the study of the dynamic behav-
ior and lattice size dependence of the surface root-mean-
square slope in a porous thin film deposition process taking
place on a triangular lattice. The thin film deposition
process involves atom adsorption and migration and is
described by a kMC simulation. The simulation results
indicate that the expected mean slope square reaches
quickly a steady-state value and exhibits a very weak
dependence with respect to lattice size variation. The
simulation findings are corroborated by an analysis of ap-
propriate finite-difference discretizations of surface height
profiles computed by an Edwards-Wilkinson (EW)-type
partial differential equation (PDE) that can be used to
describe the dynamics of surface height profile in the thin
film deposition process under consideration.

2. POROUS THIN FILM DEPOSITION PROCESS

In this section, a porous thin film deposition process
is considered and modeled by using an on-lattice kMC
model on a triangular lattice in which vacancies and
overhangs are allowed to develop (Hu et al. (2009d,a)).
In this deposition process, the film surface morphology is
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Fig. 1. Thin film growth process on a triangular lattice.
The arrows denote adsorption and migration pro-
cesses.

determined by two micro-processes: an adsorption process
and a migration process. The definitions of surface height
profile and root-mean-square slope are also introduced.

2.1 On-lattice kinetic Monte Carlo model

Fig. 1 shows the thin film growth process taking place
on a two-dimensional triangular lattice. In this lattice
model, lattice size denotes the number of sites in the
lateral direction per layer, i.e., the maximum number
of particles that can be packed within one horizontal
layer. The coordination number of the triangular lattice
is six, so a particle on the lattice can have at most six
nearest neighbors. Periodic boundary conditions (PBCs)
are applied to the lattice model. In the bottom of the
lattice, a fully-packed and fixed substrate layer is initially
placed to initiate the thin film deposition process.

We consider two different types of micro-processes in the
deposition process: an adsorption process and a migration
process. In an adsorption process, incident particles are
deposited from the gas phase and are incorporated into the
thin film. In this work, only vertical incidence is considered
in the adsorption process. When an incident particle is
incorporated into the film, it moves to the nearest vacant
site of the contacting particle. If the incident particle
moves to a site that has only one nearest neighbor, this
particle is unstable in the two-dimensional lattice. An
unstable particle is subject to instantaneous relaxation
process, where it moves to the most stable vacant site
neighboring the unstable site, i.e., the site that has the
most nearest neighbors.

In a migration process, particles on the thin film overcome
the energy barrier of their sites and move to their adjacent
vacant sites (Wang and Clancy (2001); Yang et al. (1997)).
Substrate particles cannot move. The migration rate fol-
lows an Arrhenius-type law, where the pre-exponential
factor and the activation energy are taken from a silicon
film (see Hu et al. (2009a) for details). We note that the
migration process is executed for stable particles on the
lattice that have vacant neighboring sites, which makes
the migration process different from the instantaneous
relaxation process occurring during an adsorption event.

The microscopic rules of the micro-processes are used in a
kMC method to simulate the thin film deposition process.
Specifically, a continuous-time Monte Carlo (CTMC)-type

method (e.g., Vlachos et al. (1993)) is used to carry out the
kMC simulations. KMC simulations generate realizations
of the microscopic thin film deposition process. The thin
film microstructure is obtained during the kMC simula-
tions and is the result of a complex interplay between
adsorption and migration processes. The two macroscopic
operating variables of the deposition process that influence
the resulting film microstructure are the adsorption rate
and the substrate temperature. The adsorption rate, which
is denoted by W , is defined as the number of deposited
layers per second. The substrate temperature, which is
denoted by T , has a strong influence of the migration rate
via the Arrhenius rate law.

Specifically, when the thin film is deposited at a low
temperature/high adsorption rate, e.g., T = 400 K and
W = 1 layer/s, a porous film microstructure is obtained
due to the limited mobility of the particles compared to the
deposition rate; while at high temperature/low adsorption
rate, e.g., T = 400 K and W = 1 layer/s, the film is more
likely to be dense with a flat surface, since the migration
process is significant and on-film particles can move to
more stable sites before new particles arrive.

2.2 Definition of variables

In this section, the variables that characterize the film
surface morphology are defined. Surface height profile
represents the film surface morphology and is defined
as the connection of the centers of the surface particles
(see Fig. 2). From a measurement point of view, surface
particles are the particles that can be reached from above
in the vertical direction without being fully blocked by
other particles on the film (Hu et al. (2009d,a)). Surface
roughness is a commonly used measure of thin film surface
morphology and is defined as the root-mean-square (RMS)
of surface height profile in the following form:

r =

[

1

2L

2L
∑

i=1

(hi − h̄)2

]1/2

, (1)

where r denotes surface roughness, hi, i = 1, 2, . . ., 2L, is
the surface height at the i-th position in the unit of layer, L
is the number of sites in the lattice on the lateral direction,

and h̄ = 1

2L

∑2L
i=1

hi is the average surface height.

In addition to surface roughness, the gradient (slope) of
surface height profile is another important variable that
determines the surface morphology. In this work, the
root-mean-square (RMS) slope represents the extent of
surface slope and is defined in a similar fashion to surface
roughness as follows:

m =

[

3

2L

2L
∑

i=1

(hi − hi+1)
2

]1/2

, (2)

where m denotes the RMS slope, which is a dimensionless
variable, and the numerator of the fraction, 3, is the
unit value of slope square and equals the square of the
geometric ratio,

√
3, in a triangular lattice. We note that

due to the PBCs, the slope at the last lattice site (i = 2L)
is computed as the surface height difference between the
last lattice site and the first lattice site. Fig. 2 shows an
example of the surface slope obtained from the surface
height profile.
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Fig. 2. An example showing the definition of the surface
height profile and the calculation of the corresponding
surface slope profile. It can be seen that the surface
slope is always a multiple of

√
3, which is the geomet-

ric ratio in the triangular lattice.

The two variables which are related to the surface mor-
phology, surface roughness and RMS slope, are defined in a
similar fashion, i.e., root mean squares of a spatial profile.
However, surface roughness is calculated on the basis of
the surface height profile, while RMS slope is based on
the surface slope profile. Thus, the two variables describe
different properties of the surface height profile. Surface
roughness measures the correlation of surface height at
all sites, and thus, the sequence of the surface sites does
not affect the calculation of surface roughness. On the
contrary, surface slope is the height difference between two
adjacent surface sites. As a result, RMS slope measures the
height correlation of adjacent surface sites and is sensitive
to the sequence of surface sites. Therefore, two surface
profiles with the same roughness may have very different
RMS slope profiles. We also note that surface roughness
and RMS slope are not fully independent. In the extreme
case of a flat surface, both surface roughness and RMS
slope have zero values.

3. RMS SLOPE BEHAVIOR

In this section, the RMS slope is calculated from the sur-
face height profile of the thin film deposition process. The
behavior of RMS slope, i.e., its dynamics and dependence
on lattice size, is then investigated. For the convenience
of theoretical analysis and comparison with the simula-
tions, the square of RMS slope (mean slope square), i.e.,

m2 = 3

2L

∑2L
i=1

(hi − hi+1)
2, is used.

3.1 Dynamics of RMS slope

To investigate the dynamics of RMS slope, kMC sim-
ulations of the thin film deposition process are carried
out with fixed substrate temperature and adsorption rate
throughout the entire simulation. The lattice size is fixed
to 100 sites in this section. The simulation duration is
large enough to allow the RMS slope to reach its steady-
state value. Due to the stochastic nature of kMC methods,
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Fig. 3. Profiles of the expected mean slope square (dashed
line) and surface roughness square (solid line) from
kMC simulations with lattice size of L = 100; W = 1
layer/s and T = 300 K.

different simulation runs may result in different lattice
configurations and different surface morphology. Multiple
independent simulations runs (10, 000 to 25, 000 runs) are
carried out to generate smooth profiles of statistical mo-
ments, i.e., expected values and variances.

Fig. 3 shows the profile of the expected mean slope square
at a substrate temperature of 300 K and an adsorption
rate of 1.0 layer/s. Fig. 3 also includes the profile of the
corresponding expected roughness square. The mean slope
square profile evolves similarly to the roughness square
profile: mean slope square increases from zero and ap-
proaches a finite steady-state value at large times. How-
ever, the dynamics of surface roughness square and mean
slope square are different in many aspects. First, the mean
slope square has faster dynamics than roughness square.
Second, the value of the expected mean slope square is
smaller than the steady-state value of roughness square
(the presence of the

√
3 term in the RMS slope definition

of (2) does not change this relationship). These differences
indicate different height correlations that surface rough-
ness and RMS slope measure. The height correlation of
adjacent surface sites, which mean slope square measures,
is higher than the surface height correlation with the
average height which is measured by the surface roughness.
The higher correlation results in a smaller difference, i.e.,
a smaller value and faster dynamics of mean slope square
than surface roughness. KMC simulations have also been
carried out at different operating conditions, e.g., different
substrate temperatures or adsorption rates. A consistent
trend has been observed for surface roughness and RMS
slope, i.e., the two variables both increase or decrease as
the operating conditions change (detailed results are omit-
ted due to space limitations). This consistency indicates
that RMS slope and surface roughness can be captured by
the same analytical dynamic equation of the surface height
profile, as we will discuss below.

3.2 Lattice-size dependence of RMS slope

To investigate the dependence of RMS slope on lattice
size, kMC simulations of the thin film deposition process
are carried out for different lattice sizes (from 20 to 500).
The operating conditions are fixed at T = 300 K and
W = 1.0 layer/s for all simulations. Fig. 4 shows the
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Fig. 4. Profiles of the expected mean slope square from
kMC simulations with different lattice sizes; W = 1
layer/s and T = 300 K.
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Fig. 5. Dependence of the steady-state values of the
expected mean slope square with error bars,

〈

m2
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ss
,

from kMC simulations, on the domain size, L; W = 1
layer/s and T = 300 K.

profiles of the expected mean slope square for different
lattice sizes with error bars calculated from 20 averages of
evenly-divided groups of all simulation runs. From Fig. 4,
it can be seen that the dynamics of mean slope square have
a weak relationship with the lattice size at large lattice
sizes, i.e., the profiles of mean slope square evolve and
reach steady state in a short time regardless of the lattice
sizes. Similar to the dynamics, the steady-state values of
mean slope square also have a weak dependence on lattice
size, especially at large lattice sizes. This weak dependence
of steady-state values on lattice size can be addressed
more clearly in Fig. 5, which plots the steady-state values
versus the lattice size. In the next section, analytical
and numerical results will be obtained and discussed
from a stochastic PDE model of the thin film deposition
process under consideration to explain the behavior of the
expected mean slope square observed by the simulations.

4. ANALYTICAL AND NUMERICAL RESULTS
FROM STOCHASTIC PDE MODEL

The dynamics and evolution of the surface height profile
of the thin film growth process of Fig. 1 can be described
by an Edwards-Wilkinson (EW)-type equation, which is

a second-order stochastic PDE (Edwards and Wilkinson
(1982); Family (1986); Hu et al. (2009a)).

In the EW equation, h(x, t) represents the surface height
profile in the continuum spatial domain case and takes the
following form (Edwards and Wilkinson (1982); Hu et al.
(2009a)):

∂h

∂t
= rh + ν

∂2h

∂x2
+ ξ(x, t), (3)

subject to the following periodic boundary conditions
(PBCs):

h(−L0, t) = h(L0, t),
∂h

∂x
(−L0, t) =

∂h

∂x
(L0, t) (4)

and the initial condition:

h(x, 0) = h0(x), (5)

where x ∈ [−L0, L0] is the spatial coordinate, t is the time,
and ξ(x, t) is a Gaussian white noise with the following
expressions for its mean and covariance:

〈ξ(x, t)〉 = 0,
〈ξ(x, t)ξ(x′, t′)〉 = σ2δ(x − x′)δ(t − t′),

(6)

where 〈·〉 denotes the mean value, σ2 is a parameter which
measures the intensity of the Gaussian white noise and δ(·)
denotes the standard Dirac delta function.

In the EW equation of (3), rh, ν, and σ2 are model
parameters. Specifically, rh is related to the growth of the
average surface height, ν is related to the effect of surface
particle relaxation and migration, and σ2 is related to
the noise intensity. Since rh is only related to the average
surface height, this term can be ignored for the purposes
of studying the dynamics and scaling behavior of surface
roughness and RMS slope, i.e., rh = 0 (Hu et al. (2009a)).

4.1 Analytical derivation

The behavior of surface roughness can be derived from
the EW equation (3). For the expected surface rough-
ness square, the steady-state value scales linearly with
the domain size in a one-dimensional domain in space.
This lattice-size dependence is consistent with the kMC
simulation results of the thin film deposition process (Hu
et al. (2009a)).

The dynamics of RMS slope can be derived from the
EW equation using modal decomposition. A direct com-
putation of the following eigenvalue problem of the linear
operator of (3) subject to the PBCs of (4):

ν
d2φ̄n(x)

dx2
= λnφ̄n(x),

φ̄n(−L0) = φ̄n(L0),
dφ̄n

dx
(−L0) =

dφ̄n

dx
(L0)

(7)

yields the following solution for the eigenvalues, λn, and
the eigenfunctions, φ̄n(x):

λn = −νk2n2

φn(x) = cn sin(knx), ψn(x) = cn cos(knx)
(8)

where φn(x) and ψn(x) are the two eigenfunctions corre-
sponding to the same non-zero eigenvalue λn, n ≥ 1, with
a multiplicity of 2, k = π

L0

is used to satisfy the PBCs, and
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cn is introduced for the purpose of normalization with the
values c0 = 1√

2L0

and cn = 1√
L0

, n = 1, 2, 3, . . .. The

solution of (3) is expanded in an infinite series in terms of
the eigenfunctions of the operator of (7) as follows:

h(x, t) =
∞
∑

n=0

αn(t)φ̄n(x). (9)

Substituting the above expansion for the solution, h(x, t),
into (3) and taking the inner product with the adjoint
eigenfunctions, the following system of infinite stochastic
ordinary differential equations (ODEs) is obtained:

dαn

dt
= λnαn + ξn

α(t), n = 0, 1, . . . ,∞, (10)

where ξn
α is the projection of the noise ξ(x, t) in the n-th

ODE. Due to the linearity of the stochastic ODE system
of (10), the analytical solution of state variance can be
directly solved from a direct computation. Specifically, the
expressions of the steady-state value of state variance are
shown as follows:

〈

α2
n

〉

ss
= − σ2

2λn
, n = 1, 2, . . . ,∞. (11)

Similar to the discrete lattice, the continuum form of the
RMS slope is defined as follows:

m(t) =







1

2L0

L0
∫

−L0

[

∂h

∂x
(x, t)

]2

dx







1/2

. (12)

Substituting the infinite expansion of h(x, t) of (9) into
(12), the expected mean slope square,

〈

m2(t)
〉

, can be
rewritten as follows:

〈

m2(t)
〉

=

〈

1

2L0

L0
∫

−L0

[

∂h

∂x
(x, t)

]2

dx

〉

=
1

2L0

〈 L0
∫

−L0

[

∞
∑

n=0

αn(t)
∂φ̄n

∂x
(x)

]2

dx

〉

=
1

2L0

〈 L0
∫

−L0

[

∞
∑

n=0

±αn(t)knφ̄n(x)

]2

dx

〉

=
1

2L0

〈

∞
∑

n=1

k2n2α2
n(t)

〉

=
1

2L0

∞
∑

n=1

k2n2
〈

α2
n(t)

〉

.

(13)

Eq. (13) provides a direct link between the state variance
of the infinite stochastic ODEs of (10) and the expected
mean slope square of the surface height profile. The steady-
state value of the expected mean slope square,

〈

m2
〉

ss
, can

be obtained as t → ∞. By substituting the steady-state
variances of (11) and the expressions of the eigenvalues of
(8), the analytical form of

〈

m2
〉

ss
is as follows:

〈

m2
〉

ss
=

1

2L0

∞
∑

n=1

k2n2
〈

α2
n

〉

ss

= − 1

2L0

∞
∑

n=1

k2n2 σ2

2λn
=

1

2L0

∞
∑

n=1

σ2

2ν

=
1

2L0

σ2

2ν
+

1

2L0

σ2

2ν
+

1

2L0

σ2

2ν
+ . . . .

(14)

From (14), it can be seen that each state contributes an

equal finite part, 1

2L0

σ2

2ν , to the steady-state value of the

expected mean slope square,
〈

m2
〉

ss
. Since the stochastic

ODE system of (10) has an infinite number of states, the
steady-state value of the expected mean slope square has
an infinite value. It can be also seen that

〈

m2
〉

ss
has a

reciprocal dependence on the domain size, L0.

4.2 Numerical results of discretized solution

In the previous section, the analytical derivation from
the EW equation in a continuum domain results in an
infinite steady-state value and a reciprocal domain-size
dependence of the expected mean slope square. This
behavior is different from the one obtained from the kMC
simulations of the lattice model, which leads to a finite
steady-state value and a weak lattice-size dependence.
This difference does not mean that the EW equation
cannot be used to describe the evolution of the surface
height profile and of the RMS slope. Instead, the same
behavior of RMS slope can be obtained from the EW
equation under a suitable finite-difference discretization of
the continuum surface height profile.

To obtain the behavior due to the finite discretization of
the EW equation, numerical simulations are carried out to
compute solutions of the EW equation, i.e., surface height
profile. The numerical solution of the EW equation can be
obtained from a high-order approximation of the infinite
ODE system of (10). Due to the decoupled nature of the
ODE system, the solution of each state is a stochastic
process, which is independent from the other states. Since
the ODE system contains infinite number of states and
results in an infinite computational time for the solution,
a reduced-order system with a sufficiently large number of
modes is used as an approximation of the infinite full-order
system. After the solution of the surface height profile is
obtained, it is sampled at discrete positions to obtain a
discrete surface height profile. The sampled positions are
determined from a finite-difference discretization with the
same number of discretization points as the lattice size in
the lattice model of the thin film deposition process. Then,
the expected RMS slope and the expected mean slope
square can be computed from the discrete surface height
profile. We note that the surface height profile is also
discretized in the growth direction to represent the discrete
thin film lattice model (the step size of the discretization).
Since the numerical solutions are stochastic realizations
of the analytical solution, multiple independent numerical
solutions are obtained to calculate the expected mean
slope square.

Fig. 6 shows the profile of the expected mean slope square,
which is obtained from the numerical solutions of the EW
equation with ν = 1 and σ2 = 1. The domain size of
the EW equation ranges from L0 = 0.2π to L = 5π. We
note that the number of discretization points, L, changes
simultaneously and proportionally with the domain size.
As a result, the same step size of discretization, ∆x =
2L0/L, is preserved, which corresponds to the size of
particles in the lattice model. Therefore, the number of
discretization points, which is also denoted by L, ranges
from L = 20 to L = 500. In Fig. 6, the expected mean
slope square profiles evolve similarly to the profiles from
the discrete lattice kMC model shown in Fig. 3.
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Fig. 6. Profile of the expected mean slope square from the
discretized solution of the EW equation with different
domain sizes; ∆x = 2L0/L = 0.02π.
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Fig. 7. Dependence of the steady-state values of the
expected mean slope square,

〈
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ss
, from the dis-

cretized solution of the EW equation, on the domain
size, L0; ∆x = 2L0/L = 0.02π.

The domain-size dependence of the expected mean slope
square is obtained from the numerical solutions of the
EW equation with different domain sizes, L0 ranges from
0.2π to 5π. Fig. 7 shows the domain-size dependence of
the steady-state value of the expected mean slope square,
which remains constant at large domain sizes.

From Figs. 6 and 7, the same behavior is observed from
the discretized solution of the EW equation as the one
from the kMC simulations of the lattice model, i.e., a finite
steady-state value and a weak lattice-size dependence of
the steady-state value of the expected mean slope square.
The consistency between the discretized solution of the
EW equation and of the kMC simulations corroborates
the choice of the EW equation as the dynamic model
for the surface height profile in the thin film deposition
process under consideration. This observation of the finite
steady-state value and the weak dependence on lattice size
of the expected mean slope square can also be derived
analytically from the EW equation on the basis of the
finite discretization (see Huang et al. (2010) for detailed
derivations).
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