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Abstract: Larimore’s state space model derivation and stochastic estimation algorithm, first published in 

1983, have been the adopted standard for deriving the state variables and parameters of the five (5) 

matrices state space model representation which continues to be applied extensively in the literature for 

applications ranging from controls, system identification and process monitoring. This paper presents an 

alternate derivation and stochastic estimation algorithm. The paper also discusses how strategic 

classification of the process inputs may, for some applications, facilitate the use of a simplified stochastic 

estimation algorithm. The alternative state space modeling approaches demonstrated better fault 

monitoring statistic performance for specific types of faults simulated. The canonical variate based state 

space modeling approaches were evaluated on a simulate CSTR process – with recycle through a heat 

exchanger. The results demonstrates the potential benefits to be derived from using a combined 

monitoring index based upon monitoring statistics derived from independent state space models for 

improved overall fault detecting capabilities and reliability of the fault monitoring scheme. 

 

Keywords: Dynamic modeling, Stochastic modeling, State space modeling, Fault detection, Canonical 

Variate Analysis, Combined Index. 

 

1. INTRODUCTION 

The application of canonical correlation analysis, stochastic 

estimation and system identification was pioneered  by 

Akaike (1976 ). However, his work primarily involved the 

fitting of autoregressive moving average ARMA time series 

model. The first application of a state space modelling 

approach was proposed by Larimore (1983). There are in 

general about three different form of state space 

representation appearing in the literature parameterized by 

three (3) to five (5) matrices. The 3-matrices representation is 

only applicable to systems with no exogenous inputs, one 

example of its application is by Negiz and Cinar (1997) for 

modelling Vector Autoregressive Moving Average 

(VARMA) type of time series model. Larimore (1983, and 

1990) employed a 5-matrices state space model which 

explicitly defined exogenous inputs in the representation. 

Stubbs et al (2009) proposed a return to a 3-matrices state 

space representation citing it to be more appropriate for fault 

monitoring applications as opposed to controls based 

applications. His proposal, however, also included a slight 

redefining of the process of extracting the state variables to 

ensure that the state variables captured the information 

contribution of the exogenous inputs and that the model, 

therefore, remain broadly applicable.  

Despite the simpler stochastic estimation procedure 

associated with the 3-matrices state space representation, the 

5-matrices state space model has been the more popular 

choice of representation employed for fault monitoring 

applications. Invariably, researchers applying the 5-matrices 

state space model employ Larimore’s stochastic estimation 

technique for model parameterization. In this paper an 

alternative stochastic estimation derivation and equations 

based upon minimization of the state and output residuals is 

proposed. The paper also proposes and consider yet another 

alternative method of deriving the state variables which will 

be demonstrated to achieve simplification of the stochastic 

estimation algorithm and a unification of the both Larimore’s 

stochastic estimation algorithm and that proposed by the 

author.  

The Hotelling’s T
2
 and square prediction error SPE (Q) 

statistics on the output and state residuals for the three 

variants of the state space models developed highlights the 

fact that the most effective monitoring statistics in terms of 

speed of detection is subject to the fault simulated and the 

state space model employed.  This observation led to the 

investigation of applying a combined monitoring index that 

would effectively merge the benefits of the three independent 

monitoring schemes. The method of merger was inspired by 

that proposed by Yue and Qin (2001) and Cherry and Qin 

(2006), for merging the monitoring of SPE (Q) and 

Hotelling’s T
2
 principal component analysis PCA based 

statistics. For this application, however, statistics of the same 

type obtained from two independently derived state space 

models were merged. The fault monitoring performance of 

the combine index proved to have indeed inherited the 

strengths of the two independent monitoring schemes.   
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2. Canonical Variate CV Based State Variable Extraction 

2.1  Canonical Variate Analysis 

The main idea behind canonical correlation analysis is 
to extract the relationship between two sets of variables. 
It achieves this by finding corresponding sets of linear 
combinations (the canonical variates) of the original 
data sets. The transform seeking to maximize the 
correlation between derived canonical variates:  
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This is equivalent to solving the constraint optimization: 
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where Ix and Iy are unity matrix. 

 

The solution is given by:  
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The main diagonal of the S matrix contains the correlation 

coefficients. The application of CCA to state space modeling 

involves the use of only one of set of the canonical variates to 

be used as state variables. The matrix X and Y is replaced 

with what is traditionally referred to as the past P and future 

F matrix respectively, defined as: 
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where ly, lu, f are the window lengths of the lag and lead 

windows of the input and output vectors. The state vector 

X(t) is computed from the canonical variate transform J of 

the past vector P : 

 

( ) ( )JPX tt =                                                                         (9) 

2.2 Selecting the number of state variables. 

Several methods have been proposed for selection of the 

number of state variables to be used for the state space model 

development. The number of states to be used is equivalent to 

selecting the number of columns of the J matrix. Negiz and 

Cinar (1997) proposed using the eigenvalues of the Hankel 

matrix. However, the far more popular technique is to apply 

Akaike Information Criterion AIC, Larimore (1990) and 

Simoglou et al (1999 & 2002). Thus, the method used in this 

paper explored both the option of inspection of the 

decomposed scaled Hankel matrix diagonal elements as well 

as application of the AIC criterion. The p x f correlation 

matrix S of the decomposed scaled Hankel matrix comprises 

of an f x f diagonal sub-matrix and a (p - f) x f zero matrix, 

where p is the number of vectors of the past matrix P and f is 

the number of vectors of the future matrix F. Fig. 1 shows a 

trend consistent with all models evaluated, for correlation 

values significantly less that 1, inclusion of the columns 

associated with the diagonal element provided comparatively 

minimal improvement in the model residual sum squared 

RSS error.  Therefore the number of state variables used was 

dependent upon the number of unity (or approximately unity) 

correlation diagonal elements of the S matrix. As can be 

observed the reduction in the residual sum squared RSS error 

of the model diminishes with each successive orthogonal 

vector included and more so as its associated correlation 

value deviates from unity. The AIC value corroborates the 

selection based upon the diagonal inspection as shown in  

Fig. 1 both selection method aligns with the state order 

selection of 5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Plot of RSS, correlation values diagonal of S matrix, 

and AIC. State variable selection is 5. 

 

3. PARAMETRIC STATE SPACE MODEL ESTIMATION 

3.1  Proposed Stochastic Estimation Derivation 

The advent of Larimore’s state space representation given in 

(10) offer several improvements to the previous work by 

Akaike in the area of stochastic realization and system 

identification.  
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The improvements include the inclusion of inputs in the 

representation to facilitate controls and make the model more 

broadly applicable to different process applications and 

accounting for the correlation between the state and output 
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residuals. The correlation is accounted for by the 

representation of the total measurement (output) noise using 

%��'�( + %
�'�. Accounting for the correlation between the 

residuals ensures a minimal order state space model for a 

given process, Sharper et al. (1994).  

 

The proposed stochastic estimation of matrices A, B, C, D 

and E of (10) to be presented in the following is based upon 

minimizing the RSS of the state and output equation.  

 

Consider the expansion of the squared state residuals: 
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Owing to the method used to derive the states, 
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Substituting (12) into (13) and solving for B yields: 
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Let  ) = *!

+!, then the solution for A and B maybe 

expressed as: 
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Derivation of the matrices of the output equation follows 

essentially the same path. In this case however, the equation 

for the square residual is simplified by now noting the fact 

that both the state and current input vector is orthogonal to 

the state equation residuals: 
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the output square residuals reduces to: 
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Therefore, the equations defining the matrices C and D are 

given by: 
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The central difference in the derivation approach outlined by 

Larimore (1990) and that being presented in this paper, is that 

the resulting equations explicit identifies the relationship and 

dependency of the derived parameters of one matrix relative 

to the other. Note that the parameters of matrix A as given by 

(12) will be directly dependent upon the derived parameters 

of matrix B. Likewise, equation (20) outlines the dependency 

of C on D. In both cases the dependency is linked by the 

previously defined Q matrix. The set of equations could be 

simplified, therefore, if the Q matrix was a zero matrix but 

that would require the state vector Xt being orthogonal to the 

current input vector Ut which would only be possible if there 

existed no serial or cross correlation in the set of define input 

variables. Such condition was approximated by classifying 

the controller actuating signals as outputs in the simulation 

case study used for this paper. The set of simplified stochastic 

equations is given by: 
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Finally, minimization of the output residuals with respect to 

E gives the solution: 
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3.2  Larimore’s Stochastic Estimation Algorithm 

Larimore’s stochastic estimation procedure is summarised by 

equations (26&27). The stochastic algorithms simultaneous 

derives covariance matrix of the state and output residuals  

(Фx, Фy) along with the parameters of the E matrix: 
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Equation 26 can be re-expressed to include the Q matrix as 

follows: 
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Solving the above would yield a different and even more 

complex set of equations than (15,16, 19 & 20), however, if 

the Q matrix is approximately a zero matrix, the solution 

reduces to the set of equations given by (21-24). 

 

4. APPLICATION TO CSTR FAULT MONITORING 

4.1 CSTR Model and Fault Simulation 

The CSTR system shown in Fig. 2 is an adaptation of a 

similar model used by Zhang J. et al (1996) to evaluate the 

detection and diagnostic capable of principal component 

analysis PCA based monitoring scheme. The reaction model 

is one of an irreversible heterogeneous catalytic exothermic 

conversion of a reactant A to a product B. The control 

objective is to maintain the product concentration at a desired 

level by indirect control of the temperature, residence time 

and mixing conditions in the CSTR. A recycle product stream 

circulated via a heat exchanger (HTX) is used to facilitate the 

temperature control and ensure well-mixed condition. The 

reactor temperature is controlled by manipulating the flow 

rate of the cold water feed to the heat exchanger via a cascade 

control loop. The residence time is controlled by maintaining 

the level in the reactor. 

 

 

Fig. 2. Continuous Stirred Tank Reactor CSTR with recycle 

loop via Heat Exchanger HTX. 

 

The impact of the coolant flow-rate on the heat-transfer 

coefficient UA value was also accounted for by using an 

analytical expression taken from a publication by Yoon  and 

MacGregor (2001). A notable change to the model also 

included the use of a dynamic instead of a steady-state model 

for the heat exchanger unit. There are 19 possible on-line 

measurements that could be simulated, of which 11 were 

used in the model with lead and lag order of 3 and state 

vector dimension of 5.  

Both incipient and sudden type faults were simulated to 

represent temperature and flow sensor drift type faults along 

gradual heat exchanger fouling faults and sudden valve 
sticking faults. The heat-exchanger fouling faults were 

implemented by reducing the UA of the heat-exchanger at a 

fix time rate.  

4.2 Fault Detection  

For the fault detection metrics both the Hotelling’s T
2
 

statistics based on the first k state variables and SPE (Q) 

metrics based on the residuals of the state and output matrix 

were applied. It was observed that the best detection statistics 

was dependent upon the fault being simulated and the state 

space model being employed in terms of the stochastic 

estimation algorithm employed to parameterize the model. 

This observation motivated investigations into the use of a 

combined index monitoring with the goal of merging the 

benefits of the two independent monitoring schemes. The 

method of merger was inspired by the publications of Yue 

and Qin (2001) and more recently Cherry and Qin (2006).    

 

The merger in this application involved combining statistics 

of the same type obtained from independently derived state 

space models. The combined index is defined as the 

summation of the metrics (Hotelling’s T
2
 or SPE statistics) 

weighted against their independent control limits: 
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where the subscript index indicates the state space model 

from which the statistic is derived and SPEc and T
2
c are the 

combined index square prediction residuals and Hotelling’s 

T
2
 statistics, respectively. In this application the combine 

index was derived from three state space model:  model A 

refers to the state space model derived using Larimore’s 

stochastic estimation algorithm (26&27), model B applied the 

author’s proposed alternative stochastic estimation algorithm 

(15,16,19&20) and model C is based upon the simplified set 

of stochastic equations given by (21-24) assuming the Q 

matrix zero condition holds.  

The Hotelling’s T
2
 statistics on the state on output residuals 

of model B was on average better performing than model A 

whereas Hotellings T
2
 on the state vector using model A was 

on average slightly better detecting than model B. Likewise, 

model C for some of the faults analyzed came out with the 

best detection, refer to Fig. 3a. However, they are no clear 

winner, the combine index monitoring is refer to as model 

A+B+C and has can be seen from the two examples given, it 

is most influenced equally by the independent statistics and it 

also provides a great trade off  between detection speed and 

reliability hence resulting in less misdetection and false alarm 

conditions. Two examples of the combine index statistics 

performance is provided in Fig. 3, the faults were introduce at 

sample time instance 4000. 
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Fig. 3. (a) T
2
 on output and state residual, and Q statistics on 

the output residuals for heat exchanger fouling fault (b) T
2
 

statistics on output residual and state vectors, and Q statistics 

on state residuals for temperature sensor drift fault. 

 

Table 1 provides a list of the incipient type faults tested and 

the best performing combine index statistics. The fault 

growth rate was set at 1.43 x 10
-3
% per sample interval. The 

speed of detection measurement is given as the observed 

percentage drift of the faulty process variable or parameter at 

the time of detection relative to its steady state value prior to 

fault initiation. Expressing the detection delay in sample 

intervals, therefore requires multiplying by the growth rate of 

the fault. The sudden valve sticking faults simulated were 

both instantaneously detectable by the CVA state space 

model, however, the PCA statistics only had partial success 

in detection of the such faults as shown in Fig. 4.  

 

 

 

 Table 1.  Fault detection of CVA SS model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Detection of Cool-Water and Recycle flow valve 

sticking using T
2
 and Q statistics of a PCA model. 
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Cold-Water Valve Sticking

Recycle-Flow Valve Sticking
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Recycle-Flow Valve Sticking
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(b) 

Fault 

-o. 
Fault Description 

Percent 

Drift 

Det. 

Stats. 

1 Reactor temp. sensor 0.92 T
2
Xc 

2 
Input stream 

temperature sensor 
2.64 T

2
Xc 

3 
Recycle stream 

temperature sensor 
1.61 

T
2
Xc & 

T
2
X 

4 
Recycle-pump pressure 

sensor 
2.90 

T
2
eyc & 

T
2
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5 
Analysis sensor- input 
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2.02 
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T
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6 
Analysis sensor – 

product stream 
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7 Reactor  level sensor 0.75 T
2
X 

8 
Input-stream flow 
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0.01 T

2
Xc 

9 
Recycle-Input flow 
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0.80 T

2
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10 Tank-output flow sensor 2.60 Qey 

11 
Product-output flow 
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1.42 T

2
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12 Cool-water flow sensor 2.06 T
2
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5. CONCLUSIONS 

For all the state space SS model evaluated, there was no 

clearly superior fault detecting model. The best detecting 

statistical metric was dependent upon the fault being 

evaluated and the model employed. The only overall clear 

winner was the monitoring scheme based upon the combine 

index of the independent models which seem to achieve 

filtering out of misdetection and false alarms and provided 

reliable and relatively quick detection in comparison to its 

PCA counterpart. The superior fault detection was attributed 

to the CVA SS model’s being more capable of detecting 

changes in the correlation structure between variables along 

with general shift in steady-state condition.  

Using the approximate simplifier set of stochastic equations 

did not appear to have any adverse effect on the state space 

model fault detection capabilities. This is attributed to the 

model development path used in which the controller 

actuating signals were classified as process outputs and not 

inputs, leaving only the measurements on the process input 

streams and other disturbances variables to be consider as the 

process inputs.  
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