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Abstract: In this paper, an application of a multiple model approach for the design of inferential
instruments is reported. The multiple model of interest presents a decoupled structure in the
sense that the sub-models do not share the same state variable. A two-stage identification
procedure is developed for the model identification and a soft sensor application is later
conducted with the decoupled multiple model structure. The soft sensor aims at predicting a
quality variable for an industrial separation unit. The decoupled multiple model structure allows
obtaining a dynamical model for the soft sensor despite the presence of practical constraints
related to multi-rate sampling problem. Real-time implementation results are presented.
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1. INTRODUCTION

The level of complexity of industrial processes has largely
increased with the need for increasing plants productivity,
profitability, and safety while conforming to regulations
policies related to the limitation and reduction of environ-
mental footprints. This represents a tremendous challenge
for the operation of industrial processes as it generally
requires a tight monitoring of the processes operating
conditions along with the setup of production limits. A
fundamental tool for the strict respect of these regulations
policies and the fulfillment of production expectations is
the existence of an overall reliable process instrumentation.

Classical process variables such as flow information, are
generally easy to measure. However, in some particular
situations, the environment in which the sensor is operat-
ing can make the measurement difficult or even practically
impossible. Moreover, when dealing with the measurement
of process variables related to product quality, the avail-
ability of real-time measurements can become problem-
atic. On the one hand, the lack of an efficient sensing
technology can refrain from having on-line measurements
and, on the other hand, when the sensing technology is
available, its price, the accuracy and frequency of the
obtained readings constitute inconveniences that generally
generate the need for alternative forms of instrumentation.
One of the solutions generally adopted in the process
industry is to take off-line samples on a certain frequency
and proceed to off-line laboratory analysis for having a
measurement of the product quality variable. Despite the
accuracy gained with that approach, the resultant is a lack
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of on-line measurements with the introduction of delays
in the measurements as the processing of the samples
generally requires a significant amount of time.

Soft sensors (Patwardan et al., 2007) are an efficient
alternative for handling the instrumentation problems
mentioned above. They are mathematical models that
are designed for various purposes such as serving as
back-up for real instruments, having real-time or on-
line measurements for infrequently sampled variables, or
performing sensors validation.

The design of soft sensors finds its roots in process mod-
eling. A first-principle modeling approach can be used for
this task. However, this approach requires a complete and
deep physical knowledge of the process, which can be time
and money consuming without the guaranty of achieving
the desired accuracy. Using the rich and huge historical
dataset generally available from industrial processes, a
data-driven approach (Kadlek et al., 2009) can also be
considered for soft sensors design. The most commonly
applied tools for data-driven soft sensors design relies
on multivariate analysis tools such as principal compo-
nent analysis (PCA) or projection of latent structures
(PLS). Dynamic soft sensors are based on dynamic mod-
els, such as ARX (auto-regressive exogenous) models or
Box-Jenkins models, that are used as the backbone of
the soft sensors. These linear approaches quickly show
their limitations when there exist non-linearities within
the historical dataset. In this case non-linear approaches
are better suited for soft sensors design.

The multiple model approach (Murray-Smith and Jo-
hansen, 1997) is a non-linear modeling tool for the rep-
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resentation of complex processes. The multiple model
paradigm proceeds by a divide-and-conquer strategy. The
operating space of the process to model is partitioned
into multiple smaller operating regimes in which a sub-
model with a simple structure, often a linear model struc-
ture, is used to locally describe the process dynamics.
The sub-models are then interconnected to each other by
the means of an interpolation function. Many non-linear
models structures such as operating regime based models
(Johansen and Foss, 1995), multiple models (Kiriakidis,
2007), piecewise linear models (Billings and Voon, 1987),
mixture models (Titterington et al., 1985), or Takagi-
Sugeno fuzzy models (Takagi and Sugeno, 1985; Yager
and Filev, 1994; Babuška, 1998), follow the recipe of the
multiple model approach. The multiple model approach
is an efficient and simple framework for the identification
and modeling of complex non-linear processes. Another
advantage of the multiple model approach is that existing
analysis and synthesis tools for linear systems can easily
be adapted to this class of models at the cost of very little
modification.

As mentioned earlier, the interconnection between the
sub-models of a multiple model structure is done by an
interpolation function that proceeds to a smooth blending
of the local output of the sub-models in order to generate
the global output of the model. Two interconnection struc-
tures can generally be distinguished for the sub-models.
In the most frequent structure, the sub-models share a
common state variables vector and only differ by their
parameters and the local operating regime in which they
operate. The typical example model of that type of inter-
connection is the Takagi-Sugeno fuzzy model (Takagi and
Sugeno, 1985), which is well-known in the literature and
has been reported in many successful process modeling
application and soft sensor design problems. The second
type of interconnection results in a decoupled multiple
model structure in which each sub-model has its own
state variables and evolves independently of the other
sub-models. The identification of a decoupled multiple
model structure is presented in this paper. A two-stage
identification procedure is proposed. The identification al-
gorithm alternates between the partitioning of the process
operating regime and the estimation of the sub-models
parameters. A non-linear optimization technique is used
at each stage. The performance of the obtained model is
illustrated through an industrial application for predicting
a key quality variable for an industrial separation unit.
The on-line results highlight the potential of the decoupled
multiple model approach in modeling complex processes.

2. THE CLASSICAL MULTIPLE MODEL APPROACH

In the framework of the multiple model approach, the
most used multiple model structure is the one in which
the sub-models share a common state variable, resulting
in a coupled multiple model architecture. The state space
representation of that form of the multiple model is given
by:


















x (k + 1) =

s
∑

i=1

(µi (ξ (k)) (Aix (k) +Biu (k)))

y (k) =
s
∑

i=1

(µi (ξ (k))Cix (k))

(1)

In equation (1), the variable x ∈ R
n is the state vector. The

input and output variables are respectively represented
by u(·) ∈ R

m and y(·) ∈ R
l. The interpolation or

weighting functions are represented by the functions µi(·),
i = 1, . . . , s. They act as a local validity measure for
the sub-models regarding the current operating regime
of the process and they are parametrized by the decision
variables vector ξ(·) ∈ R

p. The decision variables can be
composed of lagged inputs and outputs of the process
or any auxiliary variable allowing the non-linearities of
the process to be taken into account. They are generally
process variables for which real-time measurements or
estimation are available. Although numerous weighting
functions can be selected, the weighting functions are often
chosen as normalized Gaussian or sigmoid functions that
verify the following constraints:

M
∑

i=1

µi (ξ (k)) = 1, ∀k, µi (ξ (k)) ≥ 0, ∀k, ∀i (2)

The classical multiple model of equation (1) can be linked
to the Takagi-Sugeno fuzzy model(Takagi and Sugeno,
1985). An equivalent input/output form of the multiple
model of equation (1) is given by:











y(k) =

s
∑

i=1

µi (ξ (k)) yi (k)

yi(k) = ϕT (k)θi, i = 1, . . . , s

(3)

where yi(·), i ∈ {1, . . . , s} is the output of the i-th sub-
model which depends on a regression vector ϕ(k) and on
a local parameters vector θi, i ∈ {1, . . . , s} with:

ϕT (k) = [y(k − 1) . . . y(k − ny) (4)

u(k − 1) . . . u(k − nu) 1]

The orders of the sub-models are given by ny and nu. The
input/output representation is more adapted for model
identification purposes.

Once the decision and input variables are selected, the
identification of a multiple model generally consists of
two sub-problems. First, estimate the parameters of the
weighting functions µi(·), i = 1, . . . , s, which is equiv-
alent to the partitioning of the operating space of the
process, and second, estimate the parameters vectors θi,
i = 1, . . . , s of the sub-models. The selection of the premise
and input variables generally relies on model-based ex-
haustive tests or available physical knowledge of the pro-
cess. Different methods, such as usage of a priori knowl-
edge on the process (Murray-Smith and Johansen, 1997),
model structure search tree (Johansen and Foss, 1995) or
clustering methods (Babuška, 1998), have been proposed
in the literature for the task of partitioning the process
operating regime. With the knowledge of the partitioning
of the process operating regime, the local parameters of
the sub-models are obtained through the minimization of
an output error cost function. The sub-models parameters
are finally given by(Babuška, 1998):

Θ =
(

ΦT Φ
)

−1
ΦTY (5)

where Y is composed of consecutive stacked values of the
process output. The parameters vectors Φ and Θ are given
by:

Θ =
[

θT
1 θT

2 . . . θT
s

]

(6)
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Φ = [ψ1 ψ2 . . . ψs ] (7)

ψi =











µi (ξ (1))ϕT (1)
µi (ξ (2))ϕT (2)

...
µi (ξ (N))ϕT (N)











, i = 1, . . . , s (8)

and N is the number of data points in the identification
dataset.

Concerning the choice of the number of sub-models, the
strategy generally adopted is to start the identification
procedure with a large number of sub-models and then
refine later the obtained model. The refinement procedure
is based on the merging of “neighboring” sub-models using
a similarity measure. An alternative method is to opt for a
prior small number of sub-models and then progressively
increase the number of sub-models based on a prediction
error criterion.

3. THE DECOUPLED MULTIPLE MODEL
APPROACH

The first reference to a decoupled multiple model structure
can be traced back to (Filev, 1991). The state space
representation of this form of multiple model is expressed
as:


























xi (k + 1) =

s
∑

i=1

(µi (ξ (k)) (Aixi (k) +Biu (k)))

yi (k) = Cixi (k)

y (k) =

s
∑

i=1

(µi (ξ (k)) yi (k))

(9)

The difference here with the classical multiple model of
equation (1) is the apparition of the local state variables
xi(·) and the local sub-models outputs yi(·). Indeed, each
sub-model evolves in its own state space and the global
output y(·) of the model is obtained by combining the
local outputs yi(·) of the sub-models. The input/output
form of the decoupled multiple model structure is given
by:











y(k) =

s
∑

i=1

µi (ξ (k)) yi (k)

yi(k) = ϕT
i (k)θi, i = 1, . . . , s

(10)

with:

ϕT
i (k) = [yi(k − 1) . . . yi(k − ny) (11)

u(k − 1) . . . u(k − nu) 1]

Note that the decoupled multiple model structure allows
more flexibility in the choice of the structure of the sub-
models as they are not restricted to share a common
structure.

In (Orjuela et al., 2006), an identification procedure for a
decoupled multiple model has been proposed. The proce-
dure provides an estimation of the sub-models parameters
based on an a priori selected partitioning of the operating
space. A two-stage algorithm is presented here for the
simultaneous estimation of the weighting functions, which
is equivalent to the partitioning of the operating space, and
the sub-models parameters. It is assumed that the number
of sub-models s, the decision variables, and the input

variables are a priori selected. The weighing functions are
also represented as normalized Gaussian functions:

µi(ξ(k)) =
ωi(ξ (k))

∑s

j=1 ωj(ξ (k))
(12)

with

ωi(ξ(k)) = exp

(

−
(ξ (k) − ci)

2

σ2

)

(13)

The identification of the decoupled multiple model struc-
ture (10) requires the estimation of the parameters vec-
tor Θ and Ξ defined as: Θ = [θT

1 θT
2 . . . θ

T
s ] and Ξ =

[c1 . . . cs σ]. The estimation of Θ and Ξ is achieved by
minimizing the cost function (14):

J =
N
∑

k=1

(

y (k) − ym (k)

)2

(14)

where ym(·) is the measured output and N is the number
of available measurements.

It is obvious that the minimization of J is a non-linear
optimization problem in regard to Θ and Ξ, which re-
quires the usage of an iterative procedure. The Levenberg-
Marquadt algorithm is adopted here and a two-stage hi-
erarchical optimization is conducted. In each stage, the
Levenberg-Marquadt algorithm is used to iteratively esti-
mate whether the weighting functions parameters Ξ or the
sub-models parameters Θ:

Algorithm (Iterative identification procedure)

1. Initialization: l = 0, Ξl = Ξ0, Θl = Θ0, ηΞl
= ηΞ0

,
λΞl

= λΞ0
, ηΘl

=ηΘ0
, λΘl

=λΘ0
.

2. Calculate J(l) using equations (10) and (14).

3. Calculate Θ̂l+1 using:
Θl+1 = Θl − ηΘl

(H−1
Θl

+ λΘl
I)−1GΘl

4. Calculate JΘ(l + 1) from equations (10) and (14).

5. If JΘ(l + 1) > J(l) then update ηΘl
and λΘl

and goto
step 3 ; else J(l + 1) = JΘ(l + 1).

6. Calculate Ξl+1 using:
Ξl+1 = Ξl − ηΞl

(H−1
Ξl

+ λΞl
I)−1GΞl

7. Calculate JΞ(l + 1) from equations (10) and (14).

8. If JΞ(l + 1) > J(l) then update ηΞl
and λΞl

and goto
step 6 ; else J(l + 1) = JΞ(l + 1).

9. l = l+1; repeat from step 2 until ‖J(l+1)−J(l)‖ < ε
or l > niter

J(l) is the value of the cost function (14) at the step l. The
estimated values of the parameters vectors Θ and Ξ at the
iteration l are respectively denoted Θl and Ξl. The cost
functions JΘ(l) and JΞ(l) are respectively the values of
the cost function (14) evaluated with Θ = Θl and Ξ = Ξl.
The variables HΘl

and GΘl
(respectively HΞl

and GΞl
)

are respectively the Hessian and the gradient of the cost
function (14) evaluated at Θl (respectively Ξl). They are
calculated at each iteration using equations (10) and (14).
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The scalars λ(·) are non-negative scalars and η(·) is related
to the convergence speed of the algorithm.

From the initial guesses Ξ0, Θ0, ηΞ0
, λΞ0

, the parameters
vector Θ is updated using the recursion in step 3. Θ is
updated until JΘ(·) is lower than J(·). The second stage
of the algorithm then starts with the update of the the
parameters vector Ξ with the recursion in step 6. Again,
the update is performed until JΞ(·) becomes lower than
J(·). The procedure is stopped whenever the condition
‖J(l+1)−J(l)‖ < ε is satisfied or the maximal number of
iterations niter has been reached. Note that the presented
algorithm is only valid if the the decision variables vector
ξ(·) does not include lagged outputs of the process. The
algorithm could however be extended to take into account
that case. The modifications that have to be made in that
configuration are related to the computation of the Hessian
and the gradient of the cost function (14), which heavily
depends in that case on the type of weighting functions
being used.

The partitioning of the decision variables space into a grid
partition provides a good initial guess for Ξ. Due to its
iterative nature, the Levenberg-Marquadt algorithm in-
herits the local optima problem that is quite common with
non-linear optimization algorithms. The identification al-
gorithm has to be run in a Monte-Carlo-like scheme in
order to reduce the side effects of the local optima problem.
Concerning the selection and tuning of the scalars η(·), λ(·),
some ideas are presented in (Fletcher, 1987). As a rule of
thumb, η(·) is increased and λ(·) decreased when the error
term J(·)(·) is decreasing and vice-versa.

4. APPLICATION

4.1 Process description

For the production of oil from oil sands facilities, the
different components of the oil sands must be separated
into different streams in order to retain only the stream
that is almost exclusively composed of raw oil known as
bitumen. The bitumen is then later further processed for
obtaining crude oil as final product. The separation of the
bitumen from the other components of the oil sands, which
are generally water and solids, is accomplished through
various separation units that relies on different variations
of gravity separation principles (Dickey, 1961).

The inclined plate settling (IPS) unit is one of the sepa-
ration units used for the primary objective of separating
bitumen from the other components of the oil sands. This
type of separation unit is very popular in minerals pro-
cesses industry. Figure 1 shows a simplified representation
of an IPS unit. The objective is to allow most of the
bitumen present in the feed to leave the unit through the
overflow product stream while allowing the other compo-
nents of the feed (mainly water and solids) to settle down
at the bottom of the vessel and leaves the unit through
the underflow stream. Process aids are added to the feed
as a facilitator of the separation process. One of the key
variables that has to be monitored constantly is the quality
variable related to the percentage of water (or water-
content) present in the overflow product. This not only
serves as quality indicator for the overflow product but

also is essential for the good functioning of downstream
processes.

In oil sands facilities exploitation, reliable instrumentation
is one of the keys for an efficient and safe operation
(Dougan and McDowell, 1997). Analyzers exist for the
measurement of the water-content value but they require
high maintenance for an optimal efficiency. Laboratory
analyses are also performed on samples, taken at a rate
of one to three samples per shift, in order to measure
the percentage of water present in the overflow product
stream. Although the measurements obtained through the
laboratory analyses are the most reliable and accurate,
they do not allow the real-time monitoring of the process.
The reason is that the laboratory analyses need a long
processing time and, therefore, they introduce delays in
the measurement. Their availability is also dependant on
the sampling frequency. As an alternative, soft sensors are
considered for the frequent prediction of the water-content
of the overflow product stream in real-time.

Process aid

Inflow product

Underflow
product

Overflow
product

Fig. 1. Inclined Plates Settler (IPS) unit

4.2 Soft sensor design with a decoupled multiple model
structure

For the design of the soft sensor, the usage of the classi-
cal multiple model structure presented in section 2 does
not provide the means for designing a dynamical model.
Indeed, as the sampling rate of the laboratory samples is
irregular and relatively low (between two to six hours per
sample) comparing to the sampling rate desired for the soft
sensor, which is one minute, obtaining lagged values of the
process output as described in the model of equation (3)
is not feasible. Consequently, only a static model can be
designed with the classical multiple model of equation (3).
The past values of the output variables are not directly
available during the design process. This motivates the
choice of the decoupled multiple model structure.

The process variables that are considered are the pro-
cess aid dosage, the feed flow rate, the underflow stream
flow rate, and the level measurement for the product
inside the IPS unit vessel. Due to the small number of
process variables involved in the design, an exhaustive
search approach has been conducted in order to define
the structure of the sub-models. The level measurement
and the process aid dosage are the components of the
decision variables ε(·) and the input variables u(·) are
the process aid dosage, the feed flow rate, the underflow
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stream flow rate, and the level measurement. The regres-
sion vector ϕT

i (·) of each sub-model is given by ϕT
i (k) =

[yi(k − 1) uP (k − 1) uF (k − 1) uU (k − 1) uL(k − 1)], and
the decision variables vector ξ(·) is given by ξ (k) =
[uP (k − 1) uL(k − 1)], where the variables uP (·), uF (·),
uU (·), and uL(·) respectively denote the process aid
dosage, the feed flow rate, the underflow stream flow rate,
and the level measurement. The choice of the number of
sub-models is done by comparing prediction perfomances
for different values of the number of sub-models. The final
model makes usage of nine sub-models. As stated before,
the grid partition is a good starting point for choosing the
initial guesses of the weighting function parameters, espe-
cially in this particular application where the dimension
of the decision variables space is relatively low.

The identification dataset has been collected on a period
of one year of operation of the IPS unit. A 3σ-edit rule has
been used as data pre-processing technique for removing
outliers in the identification dataset. The industrial data
presented here has been normalized in order to protect
proprietary information. Figure 2 shows a validation result
with the decoupled multiple model. In the top graphic
of figure 2, the solid line represents the trend of the
laboratory data for the water-content values and the
dashed line is the output of the soft sensor. The second
graphic in figure 2 illustrates the alignment of the soft
sensor output in regard to the laboratory data. The
prediction accuracy achieved by the soft sensor on the
validation dataset is quite good. Note that this is an
off-line validation with laboratory data. The sampling
frequency of the lab data during that period was around
one to three samples per shift.
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Fig. 2. off-line validation with the decoupled multiple
model

In order to perform an on-line implementation of the soft
sensor, an OPC (Object linking and embedding for Process
Control) object in MatlabTM has been used as communi-
cation channel between the soft sensor and a tag created
on the DCS (Distributed Control System). By doing this,

all the necessary computations for the soft sensor are kept
in MatlabTM and only the calculations results are sent
back to the DCS through the OPC connection. Figure
3 shows the real-time trend of the process aid dosage,
the feed flow rate, the underflow stream flow rate, and
the level measurement during a period of two weeks. The
sampling rate is one minute. Again, all the data presented
is normalized for the sake of proprietary information. The
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Fig. 3. input process variables

results obtained during this period with the soft sensor are
presented on the top graphic of figure 4. The dot markers
denote the timestamps at which laboratory data was avail-
able for the water-content measurement. The top graphic
shows the soft sensor output during this period and the
bottom graphic presents the readings provided by the on-
line analyzer during the same period. The laboratory data
was available on an average basis of one sample every four
to six hours and with a delay of one hour between the time
at which the sample is taken and the time at which the
analysis result is available on-line. It can be noticed that
the soft sensor exhibits a good prediction performance and
shows a better alignment with the laboratory data than
the on-line analyzer. It provides an improvement in terms
of the accuracy of the on-line measurements of the water-
content values.

Figure 5 displays a comparison of the water-content mea-
surements provided by the soft sensor and the on-line
analyzer with the laboratory data for the water-content
values. Here again, a better alignment to the laboratory
data is obtained with the soft sensor. For this dataset, the
RMSE (Root Mean Squared Error) calculated for the soft
sensor was 0.76 in contrast to 2.39 for the analyzer.
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Fig. 4. real-time prediction (• lab data, — soft sensor
output, — analyzer reading)
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Fig. 5. lab data versus soft sensor output, lab data versus
analyzer readings

In addition to the direct applications of the soft sensor as
on-line predictor and back-up instrument, the information
provided by the soft sensor can potentially be used for
performing a tighter control on the process aid dosage.
Future work will consider this control opportunity that
can help to close the process aid dosage loop, which is
currently in manual control.

5. CONCLUSION

A decoupled multiple model approach is presented for
the design of an inferential instrument. The sub-models
of the multiple model do not share a common state

variable vector, allowing the design of a more general and
flexible model structure. The counterpart of this flexibility
is the need to use a non-linear iterative algorithm for
the identification of the model parameters. An industrial
application performed on a separation unit shows the
effectiveness of the multiple model approach in modeling
non-linear behaviors.
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