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Abstract— The objective of an economic performance assess-
ment strategy is to quantitatively measure the effectiveness of a
process in an economic framework. Such procedures typically
involve the comparison of current operation with an appropri-
ate benchmark to determine potential improvement through
improved process control. In this work, a linear quadratic
Gaussian (LQG) controller is used as a benchmark under
conditions of uncertainty. By relating key process variables to
a function describing the profitability of a process, the current
and potential (with LQG control) modes of operation can be
assessed in an economic framework. This work provides an
approach to such an assessment for a MIMO system through
economic optimization of an LQG controller weighting matrix,
and illustrates results in the form of a case studies.

1. NOTATION

K steady state gain matrix

Cu economic performance coefficient vector
of process inputs

Cy economic performance coefficient vector
of process outputs

Ny number of process inputs

Ny number of process outputs

P profitability of operation

a mean process input vector

Uu; it" process input variable

Umin  process input lower limits

Umae  Process input upper limits

] mean process output vector

Yi it" process output variable

Ymin  process output lower limits

Ymaa  Process output upper limits

Zar, z-coefficient corresponding to input constraint
violation of with probability 1 — «

Za, z-coefficient corresponding to output constraint
violation of with probability 1 — «

Qy probability of an acceptable input

Qy probability of an acceptable output

A LQG weighting vector [A, A,]

Amin ~ minimum LQG weight

Amar ~maximum LQG weight
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«  LQG input weighting vectors

LQG weighting parameter for ‘" input
y LQG output weighting vectors

v LQG weighting parameter for it" output
AX  incremental testing resolution of A

o,  input standard deviations

oy  output standard deviations

II. INTRODUCTION

The ability to quantitatively determine the effectiveness
of a controller, or a system of controllers, is critical to the
management of complex operations. It is generally accepted
that a reduction in process variability through improved
control can lead to an improved product [1][2][3] so the
existence of a relationship between controller performance
and financial benefit is logical. Economic performance as-
sessment (EPA) is a model-based tool that quantitatively
measures this relationship by providing an assessment of
controller performance in an economic framework. The re-
sulting measurement can be used to identify poor controller
performance, analyze potential investments, or choose be-
tween control strategies [4]. EPA has been an area of interest
common to both industry and academia, especially over the
past two decades [5].

The speed or ease of assessment is especially important
when dealing with large facilities in industries including
petroleum, mining, and pulp & paper, where tens of thou-
sands of controllers are used in day-to-day operations. A de-
tailed analysis of each controller would be a highly inefficient
use of resources. Therefore, EPA strategies tend to focus on
quick but effective analysis of raw data, which is typically
readily available for such applications. The intention is to
provide a reliable estimate of performance that may be
used for financial proposals or to justify further investigation
using more rigorous methods [4]. Initial work in the field of
performance assessment implied the existence of a financial
benefit to improved performance, but did not attempt to
quantify it directly. Instead, a controller performance metric
was usually a quantitative comparison of current operating
conditions against a benchmark control strategy.

Astrom [6], Harris [1], and Marlin, Stanfelj and Mac-
Gregor [7] propose reference to a minimum variance (MV)
controller performance as a benchmark for controller assess-
ment. Many other algorithms based on slight modifications
to MV benchmarking emerged in the early 1990s, either
for ease of applicability or to address specific cases. These
include works by Shah, Huang and Kwok [8], Desborough
and Harris [9], Tyler and Morari [10], and Tsiligiannis and
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Svoronos [11]. Other notable works from the 90’s based on
MYV benchmarking include work by Eriksson and Isaksson
[12], and Miao & Seborg [13], among others. Lynch and
Dumont [14], Martin, Turpin and Cline [15], and Latour [16]
provide examples of industrial application of such strategies.

However, the use of MV benchmarking has several down-
falls. The most notable of these is the impracticality of
implementation due to a lack of constraints on control action,
which is assumed to be potentially infinite. MV control
also provides the best possible feedback regulatory control,
but does not provide a good benchmark for servo control
applications [12]. Finally, MV is not realizable (infinite
control impracticalities aside) for non-square systems where
the number of control variables exceeds the number of
manipulated variables [8].

Alternative performance assessment methods have been
proposed based on optimal Hy control [17], model predictive
control (MPC) [18][19][20], and linear quadratic gaussian
(LQG) control [4][21][22][23]. On a related note, Bauer and
Craig [24] provides useful results from a web based industrial
survey on the state of economic assessment capabilities in
advanced process control applications.

The major contribution of this work is an extension to
the work by Zhao et. al. [4] in the form of an economically
optimized LQG weighting matrix in the multiple inputs, mul-
tiple outputs (MIMO) LQG assessment algorithm. Section 2
provides additional background on stochastic performance
optimization. Notation is listed in section 3. Section 4
outlines model identification strategies. Section 5 covers the
two stages of EPA. A case study is presented in section 6.
Finally, conclusions are presented in section 7.

III. STOCHASTIC ECONOMIC PERFORMANCE
OPTIMIZATION

The back-off approach to constraint handling has proven to
be an effective way of dealing with the inherently stochastic
nature of any process [25][26][27]. Back-off refers to the size
of the offset between the variable set point and upper or lower
operating limit. This offset allows for the customization of
failure probability by specifying back-off according to the
known variability distribution.

In most cases it is desirable to keep a process set point
as close as possible to a constraint while maintaining an
acceptably-low level of constraint violation [28]. For this
reason, management of the stochastic nature of a process
is a critical component of a successful control strategy. By
reducing variance through improved process control, the set
point can be moved closer to a limit while maintaining the
same probability of failure, as shown in Fig. 1. This set point
shift may result in an improved product, which can be related
to profitability through an economic performance function.

Stochastic economic performance optimization generally
involves the development of a control strategy that allows
for the highest economic output under conditions of inherent
uncertainty [4]. This optimization procedure varies in diffi-
culty depending on the size of the problem, starting from
a fairly straight forward procedure for single input, single
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Fig. 1. Mean shift towards constraint due to reduced variance

output (SISO) systems and becoming increasingly difficult
for increasingly complex MIMO systems, especially in the
absence of obvious input-output controller pairings.

For this work it is assumed that all stochastic components
are in the form of Gaussian white noise. The assumption
of Gaussian process noise inherently implies the exclusive
use of soft constraints. In practice, many process variables
(especially inputs) are subjected to hard constraints due to
limits on the physical operating range. For more information
on controller stability and feasibility while subject to a mix
of hard constraints see the work of Haneveld & van der
Vlerk [29] and Qin & Badgwell [30]. The focus of this
work, however, is a high level assessment of current and
potential process performance, and will not therefore make
a distinction between hard and soft constraints, as would be
recommended during the process of controller design.

IV. MODEL IDENTIFICATION

Strong motivation from industry necessitates quick and
easy implementation of economic performance assessment
methods. It is therefore desirable to make use of existing
operational data while analyzing performance for two main
reasons: the experimental collection of data can be time
consuming and/or disruptive to a process, and operational
data is usually readily available in an industrial setting.

First order transfer function process models will likely
suffice for quick analysis, although more thorough models
should be investigated for controller redesign. The use of
simple, first order models makes the extraction of the steady
state gain matrix fairly straight forward. For this work,
the MATLAB System Identification Toolbox was used to
generated first order transfer function matrices capturing
system behaviour based on sets of operational data.

V. ECONOMIC PERFORMANCE ASSESSMENT

A metric of performance is required for the meaningful
assessment of a system control strategy, and basing that
metric on economics is an intuitive choice for industrial
application. A cost function is a function that puts system
operation in an economic framework by relating costs to each
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observed state. A linear cost function in the form of (1) is a
reasonable choice [4] that allows the appropriate weighting
of variable priority through cost vectors ¢, and c,,.

The cost vectors in ¢, and ¢, can be chosen to represent
a monetary gain or loss associated with a one unit shift in
the mean operating condition over a given period of time. A
basic understanding of plant economics is required for this
step. For most applications, several of these parameters will
be equal to zero, implying no direct relationship of those
respective variables with overall plant profitability.

P=cly+ciu (1)

The use of (1) as the objective function in a optimiza-
tion procedure allows for quick and easy calculations, and
establishes a convex basis for the problem. In this work, an
objective function of this form is used for two economic
optimization steps: set point shift, and LQG benchmarking
with set point shift.

A. Set Point Shift

Before addressing issues of controller performance, there
are usually steps that can be taken to improve the economics
of operation based on the establishment of ideal steady state
conditions under the current control strategy [4]. Process
set points may be set further from constraint limits than is
required according to back-off analysis. Financial benefits
through improved product may be attainable simply by
finding the minimum back-off, and moving the set points
there. Implementation of this step is quick, easy, and requires
no capital investment.

The steady state gain matrix (K) and variability vectors
(0y,0,) can be readily extracted from process data.
Constraint violation tolerance vectors (1 — ay,1 — ay)
and cost function parameters (c,,c,) can be obtained
from process engineers. For more information on how
to calculate z-coefficients (zq,,2q,) based on a given
constraint violation probability, see [4]. Solution of the
minimum back-off set points can then be calculated using
the following optimization procedure, outlined by equations
(1)-(4), as developed by Zhao et. al. [4].

Maximize: P= cgg +clu
w,y
Subject to:
Q—QOZK(Q—’IZO) (2)
Ymin + Za, /20y <Y < Ymaz — Ry, /20y (3)
Umin + Zoz“/Qo'u <u< Umaz — Zozu/QO—u (4)

Since (1), (2)-(4) are all linear with respect to the opti-
mization variables % & , the above optimization problem is
convex and can be solved using a variety readily available
methods.
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Fig. 2. Typical LQG input-output standard deviation tradeoff curve over
a range of \

B. LOG benchmark with set point shift

Once set points are optimized based on current controller
performance, the EPA turns to controller assessment with
the objective of reducing or redistributing variability through
implementation of an optimized control strategy. By doing
S0, it may be possible to shift set points further towards
constraints, as depicted in Fig. 1. LQG control is one
benchmarking method that has grown in popularity since first
proposed for this purpose by Huang and Shah [23].

An LQG controller works by formulating a set of control
laws based on the minimization of the objection function
(5), where A = [\, A,] is a tuning parameter vector used
to balance control effort with output variance. When A, is
empty, a MV controller is produced. When A, is empty, no
control action is applied. By varying the values of A over a
feasible range, a tradeoff curve between o, and o, such as
that shown in Fig. 2, is produced [31] with asymptotes of
Oy = 0y, mv and 0y = Ty min.

TO) = Y i Bi) + Y OuiB ) )

These input-output variance tradeoff curves represent a
lower bound on attainable variability through feedback con-
trol, where each point along the curve corresponds to specific
controller weights A, A,. Therefore, these functions can be
used to systematically choose values of ., A, corresponding
to ideal ratios of oy:0,. These ratios can be expressed in
the form of (6). By transferring uncertainty from constraint-
limited variables to variables not operating at minimum back-
off levels, it is usually possible to shift steady state operating
conditions to more economically advantageous points. As
opposed to the case of MV benchmarking, this method
results in solutions that are feasible using feedback control.

oy = f(ou) (6)

The relationship in (6) can be applied as an additional
constraint on the optimization problem outlined in Section
4.1. The results is the following LQG tradeoff-based
stochastic algorithm, as presented by Zhao et. al. [4].
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Maximize: P=cly+clu
Uy Y,0u,0y
Subject to: (2), (3), (4), (6), and

Ou,0y 20 )

Optimizing the variance tradeoff is relatively straight for-
ward for the SISO case, but becomes increasingly difficult
as the size of the system increases. In a SISO system, A is
a single constant value, and is optimally chosen based on
a single tradeoff curve. However, A can take several forms
when dealing with MIMO system.

Optimal performance is not necessarily achieved through
minimization of variance for economically critical variables.
Instead, all interactions between input and output variables
must be explored. Ideal operation of a process almost always
involves one or more variables operating at a process con-
straint, or at a minimum back-off from a constraint, but these
are not necessarily the most (directly) economically signif-
icant variables. In order to further increase the economic
output, the variability of these constrained parameters must
be reduced, thus allowing the critical operating set points to
be moved closer to the constraint.

For example, a filtering process may be described by
a 2x2 system with two inputs: slurry and vapour stream
inlet flow rates; and two outputs: a filtrate production rate,
and an internal pressure. Even though the filtrate production
rate is the economically significant output with the highest
cost function parameter, the process may be constrained
by a maximum pressure. Therefore, a reduction in pressure
variability could allow operation at a higher pressure, which
may increase the rate of filtration. The point is that even
though pressure is an economically insignificant variable,
it may be the focus of an improved control strategy in an
economic framework.

For MIMO systems, Zhao et. al. [4] propose the use
of a weighted summation of input and output variances to
generate the LQG tradeoff curve with an objective function
of the form (8), where A is a constant. However, determining
the appropriate weighting elements for summation may be
difficult, as they will not necessarily be the same as the
parameters of the cost function. As mentioned above, optimal
cost benefit is not always achieved through reduction of
the most economically significant variables. The method
proposed by Zhao et. al. [4] allows for limited customization
beyond the cost function, as A is a single constant even for
large MIMO systems.

p m
Jroa(A) = Z wiaii + A Z rjaij (8)
i=1 j=1

Gu et. al. [18] proposes a similar solution by incorporating
input and output weighting matrices directly into the LQG
objective function for MIMO cases. Again, however, it is
proposed that the economically optimal weighting of inputs
and outputs LQG objective may not necessarily reflect the
weighting of those variables according to the cost function.
In order to improve economic performance, a control strategy
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must target constrained process variables, which may or
may not be directly economically significant. The weighting
functions for controller design and cost function should be
chosen separately. This work proposes an iterative optimiza-
tion procedure where each iteration involves the selection of
one value in the LQG weighting vectors A, and A, in (5)
according to the following procedure:

1) vary one element ’i’ of A\ over an appropriate range
while testing the system in closed-loop to obtain a
LQG tradeoff curve for every o,,-0, pairing in the form
of (6).

2) perform the optimization procedure described in sec-
tion 5B using (1), (2)-(4), (6), (7) to determine the
ideal value of A()

3) repeat until each element in A has been optimally
chosen

The nature or order of (6) will determine both the accuracy
of solution and the difficulty of the optimization procedure.
For the simplest optimization procedure the relationship
between o, and o, can be approximated as linear, but this
yield inaccuracies in the solution as Fig. 2 is clearly not
linear. Higher order approximations for (6) will result in
more accurate control, but will also require more robust
optimization techniques. Alternatively, the observed sets of
oy and oy during step 1) may be used in to iteratively solve
for each optimal value of lambda. In this case, the iterative
procedure would be revised as follows:

1) select A and perform a closed-loop test to determine
oy and oy

2) perform the optimization procedure described in sec-
tion 5A using (1), (2)-(4) and the observed values o,
and o, to determine the optimal profitability

3) repeat 1) - 2) while varying one element ’i’ of A over
an appropriate range

4) select the value of A(i) corresponding to the highest
profitability observed in 2)

5) repeat until each element in A has been optimally
chosen

Every value of the weighting vector A in these methods
corresponds to a weighting of control effort on a single
input or output parameter. The most influential elements
of A\ should be established first. An approximate order
of significance can be determined through a preliminary
screening procedure, where priority is given to variables with
the lowest value of (9). Due to the iterative nature of these
methods it should be noted that the computational expense is
increased by a factor of Mnputs + Noutputs N the first case,
and (Ninputs +Noutputs) (Amaz — Amin)/(AN). Alternatively,
if it is available, the MATLAB MPC toolbox can be used to
provide a sufficient approximation to the LQG problem, as
recommended by Zhao et. al. [4].

mm(|zi — Tmin — Zam/QUx‘v ‘(Ema:v - Zocm/Qo—a? - IED; (9)

Teuy
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Although values of the LQG weighting parameters )\,
& M, do not appear in the optimization problem, they
implicitly determine the relationship between o,, & o, . Since
this procedure is intended as a method to assess economic
performance, rather than finalize a controller design, it may
not be necessary to explicitly determine the optimal values of
Au & Ay. However, if these controller parameters are desired
it should be straight forward to determine them based on the
optimized variables o, & oy.

VI. CASE STUDY

The performance assessment method, as described in the
previous section, was applied to the simulated operation
of a multi-stage, counter-current evaporator. For this study,
the mean observed values of each variable during normal
operation were assumed to be the current set point. All noise
was approximated as Gaussian for the purposes of model
generation and simulation. Finally, MATLAB’s identification
toolbox was used to generate first order transfer function
models for unit operation from the processed data.

A. Multi-stage evaporator

1) Process description: A multi-stage, counter current
evaporator, based on a mathematical model developed by
Kaya and Sarac [32], was used for the first case study. Such
units are applied in large scale industrial processes requir-
ing significant changes in solution concentration where the
solute and solvent have considerably different vapourization
temperatures. Multiple stages are generally used to reduce
waste heat, and therefore reduce energy consumption.

The unit investigated in this work consisted of four stages
of evaporation set up in countercurrent operation. The so-
lution is fed into stage four, and flows through each stage
to stage one. The desired product is the concentrated liquid
phase solution extracted from stage one. Pressurized steam is
fed into stage one from a boiler unit. The evaporated solvent
from stage one is used to heat stage two, the evaporated
solvent from stage two is used to heat stage three, and the
evaporated solvent from stage three is used to heat stage four.

Operation of the evaporator system is controlled by three
critical manipulated variables: inlet flow rate, steam flow rate,
and steam pressure. However, overall plant operation dictates
that inlet flow rate is determined by upstream production
rate. Although a limited amount of upstream solution can be
stored momentarily, its average operating flow rate cannot be
changed without major changes to overall plant operation.
Therefore, inlet flow rate, although essential to the unit
model, will not be a variable for optimization.

Operation is also dictated by two monitored disturbance
variables: inlet stream heat content (or temperature), and inlet
concentration. The two controlled variables of the process are
product concentration and flow rate. A generalization of the
process schematic can be seen in Fig. 3.

The only significant process constraints were upper limits
on product and steam flow rates, steam pressure, and a range
for product concentration. A minimum back-off of 1.50 was
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TABLE I
EVAPORATOR STEADY STATE PROPERTY VALUES

Current SP LQG with | LQG with
Variable value shift sp shift sp shift
[4] (this work)
Product conc. | 0.6907 0.6885 0.6852 0.6864
(% TDS)
Product flow 21793 22168 24209 24284
rate (kg/h)
Inlet flow 101000 | 101000 101000 101000
rate (kg/h)
Steam flow 24487 24401 23774 23618
rate (kg/h)
Steam pres. 1.3998 1.2638 1.2816 1.2795
(bar)

desired for each constraint. The current controller is a simple
PID control strategy with key controller pairings.

The cost function for the evaporator involved a benefit
associated with production rate and concentration, and a
lesser cost penalty associated with steam flow rate and
pressure. All other variables were considered cost-neutral.

2) Economic performance assessment: Results are sum-
marized in Table I. Financial results according to the given
cost function are summarized in Fig. 4.

The first stage of performance assessment, the set point
shift optimization, revealed a potential 2.15% increase in
profitability without changes to the current control strategy.

Current
operation

Set point
shift

LQG /w SP
shift: [4]

LQG /w SP
shift: this work

|

(=]
]
S

27,000
28,000 |

N

Profitability ($/h)

Fig. 4. Evaporator hourly profit based on current operation, set point shift,
and LQG benchmarking methods with set point shift
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The most notable change recommended during this step is a
0.1 bar decrease in steam pressure. Although this adjustment
reduces the product concentration, it also increases the prod-
uct flow rate due to a slight reduction in heat transferred,
and consequently evaporation rate.

The performance assessment with LQG benchmarking
using a cost function-based controller weighting, as recom-
mended by Zhao et. al. [4], resulted in a 8.10% improvement
over the current control method. However, by optimizing
the controller weighting vector independently of the cost-
function, a potential 8.53% improvement was revealed. The
net difference between the two methods is $122.40/h, or
$88,128/month. Although seemingly insignificant at first, this
may be the difference between the approval of financing for
a project, or the winning of a contract.

The difference between the two methods can be high-
lighted by examining variables such as product density.
Product density is nowhere near operational limits, and
therefore not limited directly by back-off from a constraint.
Nonetheless, due to its high contribution to the cost function,
the method in [4] focuses on reducing the variability of prod-
uct density. The method presented in this paper, however,
weights product density variability relatively low and focuses
instead on constrained variables. The controller configuration
in [4] is therefore not optimal for the current objective.

VII. CONCLUSIONS

Zhao et. al. [4] have made significant contributions to the
field of controller assessment over the past decade. Their
approach of using an LQG controller as a benchmark for
performance assessment in an economic framework provides
an accurate, relevant and realistic estimate of achievable
performance through advanced process control. This work
has modified the controller formulation method proposed by
Zhao et. al. [4] for MIMO process assessment to achieve
a more economically advantageous controller weighting
strategy. Rather than using a cost function-based weighting
matrix, an iterative approach is proposed to optimize each
parameter within the weighting matrix concurrently with
the input-output variability relationship. Although more
computationally expensive, this new approach is especially
useful for the assessment complex system control strategies
in an economic framework.
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