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Abstract: DRTO Systems sometimes present failures when solving dynamic optimization problems. 
There are situations where the infeasibilities are due to the initial conditions, changing of constraints 
during the operation, or even in presence of conflicts between some specifications. The proposed method 
consists in solving these infeasibilities by reformulating the DAOP as a multi-objective optimization 
problem by relaxing the constraints. The goal programming approach was used to solve the dynamic 
optimization problem. Two examples, exploring different characteristic of these kinds of problems, were 
used to illustrate the methodology. The results show the ability of the proposed approach in locating and 
solving the infeasibilities, increasing the robustness of DRTO systems. 
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1. INTRODUCTION 

DRTO Systems (Dynamic Real-Time Optimization) are 
becoming more attractive to establish optimized politics in 
processes operation (Biegler, 2009; Kadam and Marquardt, 
2007, Biegler & Zavala, 2009). When solving the dynamic 
optimization problem of a DRTO system it is possible to find 
some problems that compromise its effectivity, such as 
failures in finding the optimal solution. This can happen 
when the problem is infeasible or unbounded, has numeric 
difficulties, system errors, or even problems with the 
optimization model. In this paper, we will focus on 
infeasibility of dynamic optimization problems. When this 
kind of problems is solved in real time applications, there are 
some situations where the initial conditions stay in an 
infeasible region or tend inexorably to the constraints 
violation. There are other situations where the process recipes 
are changed between two stages during the operation, or 
some important disturbance can appear, forcing some abrupt 
change in the process operation. In this case, the problem 
may become infeasible (intentionally or not). Another 
common problem is the presence of conflicts between some 
specifications. It is not rare to find this situation in real time 
operation when the operators establish constraints that 
compete themselves, resulting in an infeasible solution of the 
dynamic optimization problem. 
 
Since the 70’s decade have appeared studies detecting 
infeasible sets of constraints in the optimization problem. At 
that time, the drive force was to find infeasibilities in linear 
programming problems (LP). The way to detect an infeasible 
set of constraints was the direct location using some heuristic, 
such as: lower bound greater than upper bound, top 
temperature larger than bottom temperature in a distillation 
column, etc. 
 
During the 80’s started to appear some systematic methods to 
detect infeasible sets of constraints and to find the causes of 

such infeasibilities in LP problems (Greenberg, 1993). Using 
this approach, it has been possible to detect the irreducible 
infeasible set of constraints (IIS) (Van Loon, 1981). This is a 
set of constraints where any chosen subset results in a 
feasible problem. However, it is possible to have more than 
one IIS, and their detection is a complex combinatorial 
problem. The methods for IIS detection usually employed to 
solve infeasibilities in NLP problems are the deletion filter, 
addition filter, elastic filter, and sensibility filter (Chinneck, 
2008). Besides, sometimes is useful to combine different 
filters or to group some constraints in order to speed up the 
IIS searching. This approach has been used in MINOS 
(Chinneck, 1994) and CONOPT (Drud, 1994) softwares. 
 
Recently, consensus constraint method has appeared to find 
infeasible points in NLP problems. This method computes 
the feasible distances for each constraint and generates the 
feasibility vectors (Chinneck, 2004). The bad directions of 
these vectors should not be included in a vector called 
consensus vector, which represents the mean feasibility for 
the violated constraints. This approach is not useful for 
finding feasibility in dynamic optimization problems due to 
the large number of possible combinations of IIS in discrete-
time optimization problem, and due to the correlation of 
constrained state variables with their past values in 
continuous-time problem. This problem exists due to the 
sensitivity of the constraint with the control actions in the 
previous instants, similar to the behavior of convolution 
models, where a control action in the beginning of the 
optimization horizon has a strong influence in the state 
variables in an instant far ahead. This behavior suggests us to 
implement the control actions in a distant earlier time in order 
to avoid effectively the constraint violation. This kind of 
problem turns difficult the efficient using of this kind of 
technique. 
 
It has also been proposed the solution for infeasible problem 
using goal programming where an original problem is 
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reformulated as multi-objectives NLP problem (Tamiz et al., 
1996). In this formulation, slack variables are introduced to 
relax the original optimization problem as follow: 
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In this case, a unique solution is obtained instead the optimal 
Pareto set, and the weights wi are chosen through a heuristic 
criterion (Yang, 2008). This approach turns to be more 
effective to locate and solve infeasibilities in NLP.  
 
The known methods are focused on locating and solve 
infeasibility in LP and NLP problems. These methods have 
not been applied to identify and solve infeasibility in DAOP 
(Differential-Algebraic Optimization Problem). The 
techniques that remove or move constraints in LP and NLP 
problems are not effective for solving cases with infeasible 
initial conditions or tendency to infeasibility, and may lead 
the plant to unprofitable or even insecure conditions. 
Differently of stationary optimization, feasible solution of 
dynamic systems may depend on their initial conditions and 
the directions of the time derivatives. A state variable can be 
located in a feasible region, but the direction of the time 
derivative may point to an infeasible region where there are 
no control actions that avoid the constraint violation. This 
kind of infeasibility can happen when the process is close to 
bounds (usually after some running of the optimizer in real 
time). In the same way the initial infeasibility problem, it is 
possible to have some discontinuities in the optimization 
horizon during the operation (e.g., changing the 
specifications during process transition). 
 
In order to efficiently solve the above infeasibility problems, 
it is proposed a methodology based on constraints relaxation 
through the solution of a multi-objectives dynamic 
optimization problem described in the following section. 
 

2. SOLVING INFEASIBILITY PROBLEM 

When using diagnosis tools, it should be verified not only if 
the initial conditions are feasible or not, but also if the 
directions of the state variables time derivatives tend to 
violate a constraint. However, these cannot be enough to 
solve the infeasibility problem, being also necessary to 
analyze the feasibility of all state and control variables 
profiles. 
 
Optimization problem formulation 
 
Dynamic optimization packages usually use a standardized 
problem formulation where bound constraints are imposed to 
state and control variables and model parameters. Therefore, 
the dynamics optimization problems are usually presented as 
following (Cervantes et al., 2000): 
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where x(t) are the differential variables, y(t) the algebraic 
variables, u(t) the control variables, and p the time 
independent model parameters. The process can have path 
constraints, interior point constraints, and final time 
constraints (tf). 
 
The proposed method consists in solving the infeasibilities by 
reformulating the DAOP as multi-objective optimization 
problem relaxing the constraints. This relaxation is performed 
through the inclusion of slack variables and the utopian 
objectives into the DAOP. The objective is to find the 
minimum movement of the problematic constraints while 
optimizing the original DAOP. The basic difference of this 
approach is the usage of soft and hard constraints at the same 
time of using the relaxation approach. This leads to the 
simultaneous solution of the optimization problem and 
constraints relaxation. Using this approach, it is simple to 
decide about the optimal constraints movements. In order to 
solve this problem, the minimization of constraints 
relaxations are formulated as additional objectives functions. 
The resulting multi-objective optimization problem is 
formulated as the following goal-programming problem: 
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In order to eliminate the effects of the state and control 
variables magnitudes, the relaxations are normalized using 
the acceptable violation variance (σx

i
2). 
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There are two possible relaxation strategies: moving the 
constraint along the optimization horizon and introducing 
time-varying slack variables as a control variable. In the first 
case, the constraint may be relaxed in time points that would 
not be necessary and the control profiles may also change by 
this relaxation. This optimization problem formulation is 
equivalent to define slack variable as time-invariant 
parameters to be optimized. In the second strategy, the 
constraints are relaxed along the time intervals where the 
problem becomes infeasible. The manipulations of the slack 
variables follow the criterion of minimum relaxation that 
turns the problem feasible. This strategy is more complex but 
more appropriated, because it moves the constraints only in 
the time intervals necessary to remove the infeasibility of the 
optimization problem. 
 
When optimization problems are solved in real-time mode, it 
is necessary to obtain a unique solution (in the Pareto set) to 
be implemented in the real plant. Due to this fact, 
evolutionary methods (Coello, Pulido & Montes, 2005) are 
not useful. The weighted sum approach (Marler & Arora, 
2004) is effective only for problems with convex Pareto set. 
The -constraint approach (Marler & Arora, 2004), where the 
most important objective function is choose and all other 
objectives are constrained, is difficult to apply because in 
dynamic optimization problems the most important objective 
depends on the time interval and on the magnitude of the 
constraint violations. The use of multi-objectives 
optimization algorithm based on utopia (Logist et al., 2009) 
shows to be more interesting for the solution of dynamic 
optimization problems because the possibility to solve the 
feasibility and optimality problems simultaneously, and does 
not present the disadvantages of the other approaches. 
 

3. CASE STUDIES, RESULTS AND COMMENTS 

 
The DAOP’s are usually solved by direct methods. The 
current approaches are: sequential methods – single-shooting, 
hybrid methods – multi-shooting and simultaneous methods. 
Biegler and Grossman (2004) wrote a comprehensive review 
about these methods. We adopted the single-shooting 
method, where the control variables were discretized as 
piecewise constant profiles, the DAE and sensitivity systems 
are integrated, and the resulting NLP problem is solved 
sequentially. 
 

3.1 - Case 1 – Dynamic optimization of a batch reactor  

Consider the following batch reaction process where the 
temperature is the control variable of the system (Ray, 1981; 
Cervantes et al., 2000). The initial conditions are: CA = 1.0, 
CB = 0.0, CC = 0.0, T = 780 K, and T = 0.001 K. The 
production objective is the maximization of the component B 
concentration (CB) at the final time. Besides, it should be 
avoided the production of the component C (CC), because it is 
an undesirable component. 
 

 

CBA
21



Fig. 1. Batch reactor scheme and reactions. 
 
The process model equations are given as: 
 








 







 









RT

E

RT

E

CBA

BA
B

A
A

ekkekk

CCC

CkCk
dt

dC

Ck
dt

dC

21

0,220,11

21

1

;

1

                  (4) 

 
where CA, CB e CC are the mol fractions of the components A, 
B, and C respectively, T the reaction temperature in K; and 
k1, k2, E1, and E2 are the kinetic parameters of the reactions 1 
and 2.  
 
With this case study, three problems were solved: the original 
problem without bounds on the composition and T  650 K; 
the infeasible problem with constraints on reaction 
temperature and on composition of C; and the problem with 
relaxation on these constraints. 
 
Original Problem 
The original problem has a feasible solution. The batch 
reaction is optimized with a final (tf) time of 25 hours, and 
the optimal profiles are shown in Figure 2.  

  
(a)   (b) 

Fig. 2. Optimal solution of the original problem. State 
profiles CA, CB  and CC (a) and control profile T (b). 
 
The lower bound of the reaction temperature was not 
reached, and the final composition of B and C were 0.5406 
and 0.1789, respectively, where the later should be as lower 
as possible. 
 
Infeasible Problem 
Suppose now an upper bound in the composition of C 
(undesired co-product) is imposed, where the maximum 
allowed value is 0.1. Due to this fact, the upper bound of the 
C composition and the lower bound of the reaction 
temperature T compete each other, because they cannot be 
satisfied at the same time points. In this case, the infeasible 
problem is found due to conflicting specifications. 
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(a)   (b) 

Fig. 3. Solution of the infeasible problem. State profile of CC 
(a) and control profile T (b). 
 
As it can be seen in Fig. 3, the optimizer reduced the reaction 
temperature with the maximum negative rate. Notice that the 
final concentration of C (0.1081) violated the constraint and 
the reaction temperature reached the lower bound (650 K). It 
is impossible to find a feasible solution using this problem 
formulation. The only possible solution would be to relax the 
upper bound of the concentration of C and/or the lower 
bound of the reaction temperature. 
 
Relaxed Problem 
In this case, the multi-objective dynamic optimization 
problem is solved as mentioned before. The objectives that 
compete each other are: maximize CB at final time and 
minimize the relaxation of the constraints CC and T. Using 
this formulation, three control variables are added , sCC, 
and sT with piecewise constant profiles. 
 
The optimizer found a feasible optimal solution, shown in 
Fig. 4, where the relaxation of the minimum reaction 
temperature and maximum concentration of C were 
minimized. Notice that the maximum concentration of C 
reached was 0.1080, and the minimum temperature was 
649.1962 K. 

 
(a)   (b) 

Fig. 4. Solution of the relaxed problem. State profile of CC 
(b) and control profile T (c). 
 
Consider now we have a problem with initial condition 
infeasibility where the temperature upper bound is moved 
from 800 to 760 K. This situation is not rare when running 
the dynamic optimization of an actual plant, because usually 
the initial conditions cannot be chosen. In this case, we have 
the following modified constraint of the relaxed problem: -30 
 sT(t)  30.0 and 650  gT(t)  760. The relaxed solution 
gives the profiles shown in Fig. 5, which is the same solution 
as in the previous case, despite the relaxation of the upper 
bound at beginning of the time horizon. 
 
Another studied situation was solving the problem without 
relaxing the maximum composition of C. In this case, the 
profile of the reaction temperature is changed to compensate 
this hard constraint. Notice, in Fig. 6, that there was a larger 
relaxation in the minimum reaction temperature of 7 K. 

 
(a)   (b) 

Fig. 5. Solution of relaxed problem - upper bound of T = 760 
K. State profile of CC (a) and control profile T (b). 
 
If that relaxation is acceptable, it is better to relax only one 
constraint. In this case, the first running of the optimizer is 
performed with relaxation in all constraints. When noting it is 
possible to have an alternative solution, a second running can 
be performed where the concentration of C becomes a hard 
constraint. 

  
(a)   (b) 

Fig. 6. Solution of the partially relaxed problem. State profile 
of CC (a) and control profile T (b). 
 
In a second case, we have a problem of intermediate 
infeasibility where the lower bound is moved from 650 K to 
660 K at 10 hours during the reactor operation. In this case, 
the problem becomes infeasible inside the optimization 
horizon. It is possible to find this situation in operation of real 
plants when a recipe is changed during the operation where 
the constraints specifications are changed. In this case, we 
have the following constraints of the relaxed problem: 650  
gT(t)  760 for t[0, 10] and 660  gT(t)  760 for t(10, 25]. 
The relaxed solution gives the optimal profiles shown in Fig. 
7. 

 
(a)   (b) 

Fig. 7. Solution of the relaxed problem – intermediate 
infeasibility. State profile of CC (b) and control profile T (c). 
 
Notice that the optimizer found a feasible solution by 
anticipating the process transition when the recipe was 
changed. The bounds in reaction temperature and the 
composition of C were appropriately relaxed during the 
process operation. 

3.2 - Case 2 – Dynamic optimization of a non-isothermal 
semi-batch reactor 

Consider a non-isothermal semi-batch reactor with two 
exothermic reactions in sequence subject to the heat removal 
constraint, Fig. 8. This problem has two control variables, the 
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feed flow rate F and the reactor temperature (Srinivasan et 
al., 2003). The optimization objective is to maximize the 
amount of the component C produced during the time 
horizon. There are some constraints imposed to this process: 
maximum reaction heat rate generated along the time horizon 
and maximum final reactor volume. The initial conditions of 
the process are: CA(t0) = 10.0 mol/l, CB(t0) = 1.1685 mol/l, 
CC(t0) = 0.0 mol/l, CB,In= 20.0 mol/l,V(t0) = 1 l, F(t0) = 0.5 l/h 
and T(t0) = 35 oC.  

 

DCBA
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

Fig. 8. Semi-batch reactor scheme and reactions. 

he model equations of this problem are given as: 
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here k1, k2, E1, and E2 are the kinetic parameters of the 

pec

imilar to the previous case, three different problems were 

riginal Problem 
ptimized up to the final time (t ) of 0.5 

 this case, a well-known feasible solution was obtained. 
The upper limit of the reactor heat rate was reached, and a 

w
reactions 1 and 2; T is the reaction temperature in oC; cA, cB, 
cC, and cD are the concentrations of components A, B, C, and 

D, respectively (mol fractions); InBc , the feed composition of 

B; F the feed flow rate; V the re r volume; Q is the heat 
rate generated by the reactions; and 

1H  and 
2H  are the 

reaction heat of reactions 1 and 2, res tively. The model 
parameters are: k1,0 = 4.0 l/mol.h, E1 = 6000 kJ/mol, k2,0 = 
800 l/mol.h, E2 = 20000 kJ/mol, H1 = -30 kJ/mol, H2 = -10 
kJ/mol and R = 8.31 J/mol.K 
 

acto

S
solved with this case study: the original problem, without 
concentration constraints; the infeasible problem due to the 
constraints in the reaction temperature and concentration of 
C; and the problem with relaxation of these constraints. 
 
O
The system was o f

hours. In this case, the constraints are the maximum feed 
flow rate, the maximum variation of this flow rate, the 
reaction temperature, maximum variation of this temperature, 
the maximum heat rate generated by the reactions, and the 
maximum reaction volume. There are no constraints on the 
reagents and products concentrations. 
 
In

feasible solution shown in Fig. 9 was obtained on the 
dynamic optimization problem. Notice that the maximum 
concentration of B was 1.65 mol/l. 
 

 
(a)   (b) 

 
(c)   (d) 

 
(e)   (f) 

Fig. 9. Solution of the original problem. State profiles o CA 
(a) and C  (b); 

f 
nB

profiles of F (e) and T (f). 
 
Infeasible Problem 

state profiles of CC co trol  (b) and Q (d); and 

 

 
(a)   (b) 

 
(c)   (d) 

Fig. 10. Solution of the infeasible problem. State profiles of 
CA and CB (a) a

of the 
ndesirable co-product B is imposed, where the maximum 

nd control profiles of F (c) and T (d). 
 
Consider that an upper bound on composition 
u
allowed concentration is 1.2 mol/l, and the maximum reactor 
heat rate Q is 1.6 kJ/h. This problem formulation causes 
competition and conflicting between these constraints, 
because they cannot be satisfied at the same time, as shown 
in the results of Fig. 10. 
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elaxed Problem  
 this case, the multi-objective dynamic optimization 

entioned before. The objectives that 

R
In
problem is solved as m
compete between themselves are: maximize CB at final time, 
minimize the relaxation of the constraints CB, Q, and T. The 
results are presented in Fig. 11. Notice that the optimizer only 
has relaxed CB, maintaining the bounds of Q and T in their 
original positions. 

 
(a)   (b) 

 
(c)   (d) 

Fig. 11. Solution of the relaxed problem. State profiles of CA 
(a) and CB (b) a

This wo lving infeasible 
dynami the constraints 

ach is efficient to obtain feasible 
laxed optimal control problems when these are structurally 

, we suggest using a sequential strategy in order 
 relax only some constraints while keeping the others in 
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