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Abstract: Multi-unit optimization is a recently proposed extremum-seeking technique where
the gradient, estimated by finite difference between two identical units, is controlled to zero.
The main assumption of having two identical units is rarely verified in practice and it has been
noted that differences in the static characteristics can affect the stability and the equilibrium
point. So, correctors have been proposed, where optimization and correction for differences are
performed alternatively. This, in turn, causes a discontinuous operation leading to a hybrid
dynamics. To avoid such a scenario, an approach where optimization and correction take place
simultaneously, is presented. A proof of stability of the simultaneous scheme is also provided.
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1. INTRODUCTION

Real-time optimization methods have the objective to
bring and maintain a process to its optimal point of oper-
ation. To achieve this task, a model of the process is used
to identify the descent direction which will improve the
performance. The type of model used characterizes the
different real-time optimization methods existing in the
literature. When the objective function can be evaluated
directly by the measurements, the use of an empirical
model can be sufficient (Ariyur and Krstic (2003), Mc-
Farlane and Bacon (1989), Wellstead and Scotson (1990)).
Otherwise, a fundamental model is required (Jang et al.
(1987), Chen and Joseph (1987), Guay and Zhang (2003)).

When the performance criteria, and the constraints if any,
can be evaluated directly from the available measurements,
a simple empiric static linear model can be used (Krstic
and Wang, 2000). Then, inputs of the process can be
controlled in order to push the gradient estimated from the
model to zero. Multi-units optimization method uses this
type of model (Srinivasan, 2007). The gradient is estimated
by finite differences between identical units of the process
which are run with an offset between their inputs. When
the units are identical, using a single model for all the
units will bring them to their respective optima. However,
when the units are similar but non identical, using a single
model will not be sufficient. In order to allow the multi-
unit optimization method to converge to the real optima,
two models are required.

Sequential correctors were added to the original scheme in
Woodward et al. (2009). Therein, a sequential approach
was proposed where the multi-unit optimization was reg-
ularly interrupted to update the correctors. Even though
this scheme was able to bring the two units to their re-
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spective optima, this approach presented some limitations.
First of all, the interruption of the optimization needed to
compute the correctors is decreasing the ability to do real-
time optimization. That means that if a disturbance occurs
during the corrector’s adaptation period, the new optimal
point is not adapted before the end of the time allowed
to adapt these correctors. Also, with this sequential ap-
proach, an instantaneous change on the input is needed
at each transition between optimization and correction
introducing oscillations at the output. Finally, the tuning
of the corrector’s gains can represent a real challenge
especially when the curvature of the objective function
does not allow to quickly get a good approximation of
the correctors. In such a case, the convergence toward the
optimum is strongly dependant from the alternate between
the multi-unit optimization and the correctors adaptation.
In other words, the tuning of the gains depends of the
moment when the corrector’s adaptation is interrupted.

In this paper, a simultaneous approach is proposed where
both optimization and corrector’s adaptation are per-
formed continuously. To do so, an empiric static quadratic
model is added to the original multi-unit optimization
structure. This model is used to identify the values of the
correctors while the static linear model is still used for
optimization purpose.

In Section 2, the multi-unit optimization method is pre-
sented. Section 3 reviews the effects of differences between
units on the convergence of the multi-unit method. Section
4 contains the proposed simultaneous adaptive correctors
approach while Section 5 shows the results obtained from
the application of multi-unit optimization method with
simultaneous adaptive correctors to a simulation example.
Conclusions are provided in Section 6.
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2. MULTI-UNIT OPTIMIZATION

2.1 Problem formulation

Consider a dynamic system with state x ∈ ℜn, input
u ∈ ℜm that has to be operated so as to minimize a
convex function J(x, u) at steady state. The problem is
shown below:

min
u

J(x, u) (1)

s.t. ẋ = F (x, u) ≡ 0 (2)

where F (x, u) is the function describing the dynamics of
the system, which is assumed to be stable. The necessary
conditions of optimality are given by :

dJ

du
=

∂J

∂u
−

∂J

∂x

(

∂F

∂x

)

−1
∂F

∂u
= 0 (3)

As in the steepest descent method for numerical optimiza-
tion (Nocedal and Wright, 1999), extremum-seeking makes
the process evolve in the opposite direction of the gradient.
But instead of using the iteration index as in numerical
methods of optimization, the iterations evolve in real time.
The extremum-seeking control law is given by :

u̇ = −k

(

dJ

du

)T

(4)

The key problem is the estimation of the gradient, which
could be addressed using several methods (Guay and
Zhang (2003); Krstic and Wang (2000)). The multi-unit
method provides an estimate of the gradient by finite
differences as will be shown next.

2.2 The multi-unit scheme

The multi-unit optimization method uses a linear static
model to estimate the gradient. The applicability of this
method is guaranteed by the presence of m + 1 identical
units in the system to optimize with m being the number
of elements in the input vector u. Then, for a single input
process, two identical units are required. These units are
operated with inputs different one from each other with
an offset of Δ, as shown in Fig. 1:

u1 = u−
Δ

2
(5)

u2 = u+
Δ

2
(6)

The gradient ĝ is estimated by finite differences between
the output of the units noted by J1 and J2:

ĝ(u) =
J2(x2, u2)− J1(x1, u1)

Δ
(7)

The extremum-seeking control law (4) is then applied:

u̇ = −kĝT (u) (8)

Let u∗ be the equilibrium point where the multi-unit
optimization algorithm converges. This means that the
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Fig. 1. Schematic for multi-unit optimization

inputs of the two units would converge to u∗

1 = u∗ − Δ

2

and u∗

2 = u∗ + Δ

2
.

All units follow the same control law and always keep
an input offset of Δ from each other. The convergence
of this scheme to a ball around the optimum has been
proven despite the errors caused by the dynamics (which
is assumed to be stable) and the error due to finite
differences.

As the units are identical, they all have the same dynamics.
These dynamics are eliminated by the gradient estimation
using the finite differences allowing a faster adaptation
for the integral controller. As the perturbation used to
estimate the gradient is not a temporal one, the use of
filters is unnecessary here. The only time scale separation
needed is between the adaptation and the dynamic of
the system. Then, in comparison with methods using a
temporal perturbation signal, a faster convergence toward
the optimum can be achieved especially for slow dynamics
processes. Also, as no sinusoidal perturbation is needed,
no oscillations will be introduce around the optimal point.
However, the assumption of having identical units is a
strong assumption that does not depicts the reality. The
effects of applying the multi-unit optimization method
to optimize processes with non-identical units will be
presented next.

3. MULTI-UNIT OPTIMIZATION WITH
NON-IDENTICAL UNITS

3.1 Characterization of the difference between the units

Differences between the units of a process can take many
forms. For example, the units can have different dynamics.
The stability of the multi-unit optimization method ap-
plied to processes where the units have different dynamics
can be guaranteed by an adequate choice of the sign of
Δ (Reney et al., 2009). This choice requires a minimal
knowledge of the relative response time of the units.

The static characteristics can also differ. This type of
differences is the point of interest of the present pa-
per. The following assumptions define the problem under
study: i) the optimization problem has a unique manipu-
lated variable and the process contains two similar units,
ii)dynamics of the system are very fast in comparison with
the time scale of the optimization, i.e. the process can be
considered in quasi-static, iii)measurements are noiseless
and, iv)the objective function is a convex function.
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Considering J1(u1) and J2(u2), the static curves of unit 1
and unit 2 of the process respectively such that,

∂J1

∂u

∣

∣

∣

uopt

1

=
∂J2

∂u

∣

∣

∣

uopt

2

= 0 (9)

where u
opt
1 and u

opt
2 denote the optima of the first and

second unit respectively, the relation between the static
curves of the two units can be formulated as follow:

J2(u) = J1(u+ �) + 
 + J̄(u+ �) (10)

where,

� = u
opt
1 − u

opt
2 (11)


 = J2(u
opt
2 )− J1(u

opt
1 ) (12)

This expression describes a shift between the two units
both on the input, u (represented by �), and on the
output, J (represented by 
). The function J̄ quantifies
the difference on the curvature of the static characteristics
of the two units for any operational point.

The function J̄ and its derivative, evaluated at the op-
erational point u

opt
1 can be obtained by evaluating the

equation (10) at the point u = u
opt
2 . Simplifying, these

equations become:

J̄(uopt
1 ) = 0,

∂J̄

∂u

∣

∣

∣

uopt

1

= 0 (13)

Then, around the optimum, if the difference of curvatures
between the two units at their respective optimum is

negligible, i.e.∂
2J̄

∂u2 ≃ 0, J̄ can be considered to be zero,

J̄ ≃ 0. This assumption complete the description of the
problem under study.

3.2 Equilibrium and stability of the multi-unit optimization
method for processes with non identical units

Differences between the static characteristics of the units
can bring the process to converge to a point of operation
far from the real optimum, or worst case, can bring
the process to diverge. The equilibrium point and the
conditions assuring convergence of the process in such a
case have been identified in Woodward et al. (2009) and
are presented below.

Consider the extremum-seeking control law (8) and the
multi-unit gradient estimation (7). If J̄ ≃ 0 in the neigh-
borhood of the optimum, it was shown that:

∙ the equilibrium point u∗, can be approximated by:

u∗ ≃
u
opt
1 + u

opt
2

2
−




(Δ + �)∂
2J1

∂u2

(14)

∙ the local stability is guaranteed iff the parameter Δ
is chosen such that:

(Δ)(Δ + �) > 0 (15)

4. MULTI-UNIT OPTIMIZATION WITH ADAPTIVE
CORRECTORS: A SIMULTANEOUS APPROACH

In order to bring the multi-unit optimization method to
converge to the real optimum, adaptive correctors are

added to the original scheme as shown in Fig. 2. In the

proposed approach, these correctors, �̂ and 
̂, are adapted
simultaneously with the evolution of the process to its
optimum.

Including simultaneous adaptive correctors in the multi-
unit optimization scheme, requires an additional assump-
tion. The approximation of the objective function using a
quadratic model, noted Jm, should be possible, i.e.,

Jm = �T � (16)

with

�T = [1 u u2] (17)

and � being the adaptive parameters of the model. The
assumption for which J1 and J2 have the same curvature
around the optimum remains. The objective functions of
each unit can then be modeled by:

Jm1(u1) = �1au
2
1 + �1bu1 + �1c (18)

Jm2(u2) = �2au
2
2 + �2bu2 + �c2 (19)
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Fig. 2. Structure of the multi-unit optimization method
with simultaneous adaptive correctors

As shown in Fig. 2, a temporal persistent perturbation
with frequency ! is added to the input of the system, u.

Then, the values of the correctors �̂ and 
̂ are computed

using the estimated parameters �̂T = [�̂1
T
�̂T2 ]. These

parameters are estimated using a recursive least square
algorithm with forgetting factor Ljung (1999). The adap-
tive laws of this RLS algorithm are as follow:

˙̂
R=ΦTΦ− �R̂ (20)

˙̂
�= R̂−1Φ(J − ΦT �̂) (21)

where, R̂ is the correlation matrix, �, the forgetting factor.
It is supposed here that the system is sufficiently excited to

estimate the parameters �̂ of the model, i.e. �1I < R < �2I
with �2 > �1 > 0.

The optimization is done by the multi-unit method,

u1 = u−
Δ

2
+ a sin(!t) (22)

u2 = u+
Δ

2
− �̂ + a sin(!t) (23)

u̇=−
kmu

Δ
(J2 − J1 − 
̂) (24)
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simultaneously with the adaptation of the correctors �̂ and

̂:

˙̂
� = k�

(

û
opt
1 − û

opt
2 − �̂

)

(25)

˙̂
 = k


(

Ĵ2(û
opt
2 )− Ĵ1(û

opt
1 )− 
̂

)

(26)

where ûopt
1 and û

opt
2 are the estimated optimal operational

points of the models of unit 1 and unit 2 respectively (from
equations (18-19)). These control laws are based on the
definition of � and 
 themselves given by equations (11)
and (12).

4.1 Convergence analysis of the multi-unit optimization
method with simultaneous adaptive correctors

The stability of the equilibrium point of the multi-unit op-
timization method with simultaneous adaptive correctors
described previously will be analyzed.

Theorem 4.1. Consider the input to be persistently ex-
citing, i.e. the correlation matrix being bounded with
�1I < R < �2I with 0 < �1 < �2. Then, it is possible
to choose the tuning parameters kmu, k� and k
 such that
the equilibrium point describe by equations (22-21) given

by ue = u
opt
1 , �̂ = � and 
̂ = 
 is locally asymptotically

stable.

Proof:

Consider the following Lyapunov function:

V =
1

2
w1(u − ue)2 +

1

2
w2�̃

2 +
1

2
w3
̃

2 +
1

2
�̃TR�̃ (27)

Where w1, w2 and w3 > 0, �̃ ≡ �̂ − �, 
̃ ≡ 
̂ − 
 and

�̃ ≡ �̂ − �. Then, V ≥ 0 and V = 0 when u = ue,
�̃ = 
̃ = �̃ = 0. According to the definition of �̃, 
̃, and �̃,
the following equivalences apply:

˙̃
� =

˙̂
� (28)

˙̃
 = ˙̂
 (29)

˙̃
�=

˙̂
� (30)

The temporal derivative of the Lyapunov function is given
by the following equation:

V̇ =w1(u− ue)u̇ + w2�̃
˙̃
� + w3
̃ ˙̃
 + �̃TR

˙̃
� + �̃T Ṙ�̃(31)

The non-linearity of the expressions of ˙̃
�, ˙̃
 and u̇ will

introduce terms higher than the second order in the
expression of V̇ . As the proof of convergence provided
here is locally valid, these terms will be neglected (Khalil,
1996).

Considering again the assumption that the static charac-
teristics of the units have the same curvature around the
optimum, such that �1a = �2a, the control law (25) can be
rewritten as follow:

˙̂
� =

˙̃
� = k�

(

�1b − �̃1b

2(�1a + �̃1a)
−

�2b − �̃2b

2(�1a + �̃2a)
− �̂

)

(32)

Using the equivalence �̂ = �̃ + � and reorganizing, we
obtain:

˙̃
� = k�

(

− �̃ −
�̃2a� − �̃2b

2

�1a + �̃2a

−
�̃1b

2(�1a + �̃1a)
+

�1b(�̃1a − �̃2a)

2(�1a + �̃1a)(�1a + �̃2a)

)

(33)

A second order Taylor development of the expression
1

�1a+�̃2a
gives:

1

�1a + �̃2a
=

1

�1a

( 1

1 + �̃2a
�1a

)

(34)

≈
1

�1a

(

1−
�̃2a

�1a
+

�̃22a
�21a

)

(35)

Using this expression and neglecting the second order
terms lead to:

˙̃
� ≈ k�

(

−�̃ −
�̃2a� − �̃2b

2

�1a
−

�̃1b

2�1a
+

�1b(�̃1a − �̃2a)

2�21a

)

(36)

Using a similar approach, we also obtain:

˙̃
 ≈ k
(−
̃ + �̃2a�
2 −

�(�̃2b�1a − �̃2a�1b)

�1a

+
�1b(�̃1b − �̃2b)

2�1a
+

�21b(�̃2a − �̃1a)

4�21a
+ �̃2c − �̃1c) (37)

Using equation (10) in equation (24) and using the equiv-

alences �̂ = �̃ + � and 
̂ = 
̃ + 
, we get:

u̇ =
−kmu

Δ

(

J1(u+
Δ

2
− �̃)− J1(u−

Δ

2
)− 
̃

)

(38)

A second order Taylor expansion around the point ue leads
to:

u̇ ≈ −kmu

(∂2J1

∂u2
(u− ue) +

∂2J1

∂u2
(
�̃2

2Δ
− �̃

(u − ue)

Δ
+

�̃

4
)

−

̃

2Δ

)

(39)

Keeping only the linear part, we obtain:

u̇ ≈ −kmu

(

∂2J1

∂u2
(u− ue) +

∂2J1

∂u2
(
�̃

4
) + kmu


̃

2Δ

)

(40)

Using equations (36), (37) and (40), the expression of the
temporal derivative of the Lyapunov function becomes:

V̇ =−A(u− ue)
2 −B�̃2 − C
̃2 − ��̃TR�̃

+D
̃(u− ue) + E�̃(u− ue) + FT �̃�̃ +GT �̃
̃ (41)

where:

A = kmu!1�1a > 0

B = k�!2 > 0

C = k
!3 > 0
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D =
kmu!1

2Δ

E = −
kmu!1

4
�1a

FT =
[ k�!2

2�21a
−

k�!2

2�1a
0

k�!2

2�21a
� −

k�!2

2�1a
0
]

GT =
[

−
k
!3�

2
1b

4�21a

k
!3�1b

2�1a
− !3k
 ...

...
k
!3�

2
1b

4�21a
+

k
!3��1b

�1a
+ k
!3�

2...

... k
!3� −
k
!3�1b

2�1a
!3k


]

� > 0

In order to have V̇ < 0, the following expressions must be
verified:

D2 < 4AC

E2 < 4AB

FTF < 4B�R

GTG< 4C�R

The two last conditions may appear difficult to satisfy
since the value of the elements of the matrix R are time
dependant. However, since the matrix R is bounded by
�1I < R < �2I with 0 < �1 < �2, these conditions can be
met by choosing the parameters k� , k
 , !2 and !3 such
that FFT < 4B��1 and GGT < 4C��1. The condition
V̇ < 0 can then be met by an adequate choice of the values
of !1, !2, !3, kmu, k� , k
 , � and Δ. This demonstrate
the local asymptotic stability of the equilibrium point
of the multi-unit optimization method with simultaneous
adaptive correctors. □

5. ILLUSTRATIVE EXAMPLE

The problem under study is the production of green flu-
orescent protein (GFP) by E. coli cells. The following
kinetic model, based on glucose as growth-limiting sub-
strate, presented in Aucoin et al. (2006) was used for the
simulations:

Ẋ = �X −

(

F

V

)

X (42)

Ṗ = (YP/S�+ �)X −
F

V
P (43)

Ṡ =

(

F

V

)

(Sf − S)−
�X

YX/S
−

(YP/X�+ �)X

YP/S

−ms

(

S

Ksm + S

)

X (44)

where X is the biomass concentration, F the feed rate of
the substrate into the bioreactor, � the specific growth
rate of the biomass, V the volume of the bioreactor,
S the substrate concentration, Sf the concentration of
the substrate inlet, P the concentration of GFP, YP/S

is the product yield on substrate coefficient, YP/X the
production yield on biomass coefficient, YX/S the biomass

yield on substrate coefficient, � the non-growth associated
product formation constant, and mS the maintenance
coefficient. The Monod model is used for the expression
of �:

� =
�maxS

Ks + S
(45)

where �max is the maximum growth rate constant and Ks

a saturation constant.

The optimization problem is to maximize the quantity
of GFP in the post-induction period by adjusting the
substrate flow into the bioreactor:

max
F

FP (46)

s.t. (42), (43), (44) ≡ 0 (47)

The multi-unit optimization method with simultaneous
adaptive correctors is applied to the system containing two
similar bioreactors. Figure 3 shows the static characteris-
tics of the two bioreactors obtained when the numerical
values of Table 1 are used.

Table 1. Numerical values used for the param-
eters of the model

Unit 1 Unit 2
ms 0.0025 0.0025 g S/(g X h)
KS 0.4 0.4 g/L
YP/X 66.92 66.92 mg P/g X

Sf 60 60 g/L
YP/S 50 50 mg P/g S

KSm
0.04 0.04 g/L

� 0.1 0.1 mg P/(g X h)
V 20 20 L
�max 0.925 1 ℎ−1

YX/S 0.35 0.4 gX/gS
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Fig. 3. Static characteristics of the two non identical
bioreactors

As these static curves don’t show a quadratic form, the
assumption used in the proof is not verified here. Then,
the control laws used for the adaptation of the correctors
are different than the ones presented in the proof but they
are similar to the ones used with the sequential approach:

˙̂
� = k�

(

2�̂2a(u− �̂) + �̂2b − 2�̂1a(u) + �̂1b

)

(48)


̂ = k


(

�̂2a(u− �̂)2 + �̂2b(u− �̂) + �̂2c

− �̂1a(u)
2 + �̂1b(u) + �̂1c − 
̂

)

(49)
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Figure 4 shows the optimization results obtained using the
tuning parameters given in Table 2 .

Table 2. Tuning parameters of the multi-unit
optimization method with simultaneous cor-

rectors

Δ -1 L/h

k� -4.5 ×10−6 L2

ℎ2mg

kmu 2.25× 10−5 L2

ℎ2mg

k
 1.2× 10−2 1

ℎ
a 1 L/h
! 0.06 rad/h
� 0.017
Ri,j∣i=j(0) 1

Ri,j∣i∕=j(0) 0
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Fig. 4. Results of the multi-unit optimization method with
simultaneous correctors applied to two non identical
bioreactors

Even if the static curves are not quadratics, using a
quadratic model makes the system converge to a point
relatively close to the real optimum in about 1000 hours,
which is almost the same time than when a sequential
approach is chosen (results not shown). Then, the same
performance is achieved without any discontinuity in the
optimization. The disturbances occurring in the system
will be easier to compensate by the closed loop system.

The 
̂ corrector needs the values of the outputs of the
units at the same point of operation. These values can be
easily obtained even with a poor estimation of the model
parameters. A first order model would be enough to get a

good estimation of the 
̂ corrector. The �̂ corrector needs
the estimation of the gradients of the units at the same
operational point. As the real operational points of the
units are different from an offset of Δ, the model must be
able to take into account a change in the slope between
two different points of operation. Then, a second order

model is needed to get a good evaluation of the �̂ corrector.
Also, the amplitude of the excitation periodic signal used
must be large enough to allow a good estimation of

parameters �̂2a and �̂1a around the optimum (estimation

of the curvature) in order to get an adequate value of �̂.
The amplitude of the persistent excitation signal is a trade-

off between a good estimation of the corrector �̂ and the
resulting oscillations amplitude around the optimum.

6. CONCLUSION

In this paper, an improved multi-unit scheme with simulta-
neous adaptive correctors was presented in order to handle
non- identical units. The adaptation of the correctors and
multi-unit optimization are performed simultaneously us-
ing a static empiric quadratic model of the process. Local
stability and convergence of the scheme to the respective
optima were demonstrated.

The ideas were illustrated with two bioreactors with dif-
ferences both in static and dynamic characteristics. Both
bioreactors converge to a neighborhood of their real opti-
mal point. Future work will focus on using a different type
of empiric models to improve the applicability to processes
described by non-quadratic objective functions.
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