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Abstract: Model-free unconstrained real-time optimization can be realized by controlling the gradient to 
zero. In this paper, the multiunit optimization framework is used where the gradient is estimated using 
finite difference between two identical units operating with an offset.  It has been recently shown that the 
global optimization is achieved by reducing this offset to zero for scalar nonlinear maps. In this paper, this 
scheme is extended to the case of two-input systems, by repeating mono-variable global optimization on 
the circumference of a circle of reducing radius. The theoretical concepts are illustrated on the global 
optimization of two examples.  
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1. INTRODUCTION 

 
The main purpose of optimization is to improve the profit or 
reduce the operating cost, which is typically expressed as a 
nonlinear function of different decision variables. Finding the 
global optimum of an industrial process, has always been 
attractive in many engineering applications. Most of these 
problems are intrinsically multivariable.  
 
For global optimization, many model-based deterministic 
(such as tight convex αBB underestimators for С2-continous 
functions) or probabilistic approaches (such as random search 
and clustering) have been significantly developed during the 
last decades (Floudas et al, 2008). The deterministic methods 
exploit certain properties of the nonlinear function, while 
stochastic methods do not always guarantee convergence. 
These methods differ in terms of  computational complexity, 
cost and accuracy.  
 
On the other hand, in model-free real-time optimization 
methods, so-called extremum-seeking controllers, the 
unconstrained optimization problem is cast as a problem of 
controlling the gradient of the objective function to zero. For 
estimating the gradient, many techniques have been used: 
perturbations (Leblanc, 1922; Kristic, 2000), model-based 
(Guay et al, 2004) and multi-unit optimization (Srinivasan, 
2007). These strategies lead to the closest local optimum 
depending on where the optimization starts. The framework 
used in this paper is the multi-unit optimization, that 
computes the gradient via finite difference between the 
outputs of multiple units with inputs that differ by a constant, 
pre-fixed offset (Srinivasan, 2007; Woodward et al., 2009 ). 
On the other hand, a global extremum seeking strategy based 
on perturbations (Tan et al., 2005, 2006a, b) was proposed, 

where the amplitude of perturbation was reduced to zero. 
However, it has been shown that such a technique works for a 
restricted class of mono-variable nonlinear functions. As 
another alternative, it was recently shown  in Azar et al. 
(2009a)  that in the multi-unit optimization of a mono-variable 
system when the offset is reduced to zero, the scheme reaches 
the global optimum for all continuous nonlinear functions. 
Since the algorithm converges to a very small vicinity of the 
global optimum, it is so-called semi-global optimization. This 
technique was also extended to include inequality constraints 
(Azar et al., 2009b).  
 
Local extremum-seeking techniques have been extended to 
the multi-variable setup; early multivariable extremum 
seeking schemes by Rotea (2000) and Walsh (2000) followed 
by a systematic design procedure provided by Ariyur et al. 
(2003). Teel and Popović (2001) studied sufficient conditions 
for the asymptotic stability of the smooth and non-smooth 
multivariable extremum seeking controllers that utilize some 
nonlinear programming algorithms.   
 
In this paper, an extremum seeking strategy that converges to 
the global optimum of the static nonlinear continuous systems 
with two variables is proposed. This result is the extension of 
global optimization of mono-variable systems. The core idea 
is to iteratively perform mono-variable global optimization on 
the circumference of a circle of reducing radius. The radius of 
the circle is asymptotically reduced to zero. Also, relaxations 
of the algorithm are presented to make it numerically 
efficient.  
 
The outline of the paper is as follows. Section 2 briefly 
reviews the local and global extremum seeking control using 
multi-unit optimization. Section 3 gives the extension of new 
algorithm with a discussion on the convergence result.
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Finally, the mentioned methodology is numerically simulated 
through some illustrative examples in section 4. 

2. GLOBAL MONOVARIABLE EXTREMUM-SEEKING 
CONTROL USING MULTI-UNITS 

 
The multi-unit optimization method is a real-time extremum 
seeking technique that estimates the gradient by the finite 
difference of the outputs of two identical units where the 
inputs differ by an offset ∆ (Srinivasan, 2007). An integral 
controller then forces the gradient to zero. The basic 
schematic of this technique (where ∆ is fixed) converges to a 
local optimum of the objective function. It has been recently 
shown that global optimization of the nonlinear continuous 
static scalar maps can be achieved if ∆ is monotonically 
reduced to zero (Azar et al., 2009a). This algorithm converges 
to an arbitrarily small vicinity of the global optimum of the 
static nonlinear continuous scalar maps (so-called semi-global 
optimization). The schematic is presented in Figure 1. 
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Figure 1: Global extremum seeking  with multi units 
 

The update equations and adaptation laws for global 
optimization (minimization) are given by, 
 

∆−=∆+= uuuu 21 ,                                            (1) 

( ) ( )( ) 0)0(,. uuufufsignu =∆−−∆+∆−= β            (2) 

0)0(, 0 >∆=∆∆−=∆ β        (3) 
 
where β > 0 is a parameter that determines the rate at which ∆ 
is reduced to zero. It is important to note that only the unit 
with a lower objective function moves, while the one with the 
higher objective function stays at its current value.   
 
It has been shown that this algorithm would reach to the 
global maximum provided the initial interval is large enough 
to include the global maximum. The proof of the result is 
based on the fact that the unique global maximum always lies 
within the interval [u1(t), u2(t)] (Azar et al 2009a).  
 
Also, the algorithm has been extended to the constrained 
global optimization of mono-variable systems where a 
switching adaptation law was used to handle the constraints 
(Azar et al.,  2009b).  
 

3. GLOBAL OPTIMIZATION OF TWO-INPUT SYSTEMS 
USING MULTI-UNITS 

3.1 Construction of the algorithm 

The main question that is addressed in this paper is how the 
global optimum of a two-dimensional map can be found in the 
multi-unit optimization framework. 
Consider the problem of minimizing, y = f(u1,u2), where f: 
R2→R, is a non-convex continuous, nonlinear function. The 
problem may have multiple local optima, (u1k

 * , u2k
 *), k = 1,2, 

…, n, but a unique global minimum, (u1
**, u2

**). In the rest of 
the paper, it is assumed that the global minimum is unique. 
 
The proposed algorithm uses the spirit of the unconstrained 
scalar global optimization one. Here, we also need two 
identical units referred to as “a” and  “b”.  Let (u1a and u2a) 
represent the first and second inputs of unit “a” and (u1b and 
u2b) represent the inputs of unit “b”. The core idea of this 
algorithm is to perform global optimization on the 
circumference of a circle of reducing radius. 
 
It is assumed that the feasible global optimum lies within the 
initial circle. The radius of this circle is reduced to zero in a 
predefined fashion. If the centre of the circle is so adapted as 
to keep the best optimum at the circumference, the algorithm 
converges to the global optimum of the nonlinear map when 
the radius goes to zero. In order to mathematically formulate 
the above mentioned methodology three iterative layers for 
the new optimization algorithm are considered: 

Layer 1: Global optimization along the circumference of a 
circle 

Consider a circle centred at the input values (u1,u2) and a 
radius of ∆ (figure 2). The multi-unit optimization along the 
circumference of the circle of reducing radius is repeated 
iteratively. Let aθ and bθ  be the angels of the two units. 
Then the input values of the two units are given by: 
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The adaptation laws (for minimization) along the 
circumference of the circle are given by: 
 

θθθ ∆+=a     ,    θθθ ∆−=b                                (6) 

)(. ba ffsign −∆−= θθβθ         , miiT θπθ +=+ )(      (7) 

θθθ β ∆−=∆                                    , πθ =∆ + )(iT             (8) 
   
where ∆θ is the offset between two angles aθ and bθ  and βθ > 
0 is a parameter that determines the rate at which ∆θ is 
reduced. This corresponds to mono-variable global 
optimization along the circle of radius ∆ using the angle θ . 
As will be discussed in the next section, the initial conditions 
of the equations (7) and (8) would be reinitialized 
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periodically. The period of the iteration (T) is so chosen that 
∆θ reduces to prefixed value εθ, i.e. 
 

ln(2 ) ln( )
T θ

θ

π ε
β
−

=              (9) 

 
 
 
 

 

 

 

 
 

 
Figure 2: Global optimization along the circumference of 

a circle 
 

Layer 2: Recursive global optimization  

Let  “i” denote the number of iteration (i = 0,1,2,…). At the 
beginning of each iteration, ∆θ is initialized to π in order to 
cover the entire circle. The initial value of θ is so chosen to 
be the global optimum of the previous iteration.   
 
At the beginning of first iteration (i.e. i=0) , the initial value 
of 0mθ  is arbitrarily set at zero. In the next iterations, miθ  is 

computed from the values of  aθ and bθ   at the end of the 
previous iteration as follows 
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The optimization along the circumference is repeated every T 
time units. miθ  corresponds to the converged value and 
would represent the global optimization along the 
circumference of the circle of iteration “i-1” if εθ = 0. 

Layer 3: Reducing the radius of the circle  

It is assumed that the feasible global minimum lies within the 
initial circle (centred at the initial inputs  (u1(0),u2(0)) with 
the radius of ∆(0)). This radius is monotonically reduced to 
zero i.e., 

       0)0( 0 >∆=∆∆−=∆ β                 (11) 

β > 0 is a parameter that determines the rate at which ∆ is 
reduced. The algorithm stops when ∆ is reduced to a prefixed 
value ε. This means the time of integration of the algorithm is 
given by, 

β
ε )ln()ln( 0 −∆

=totT             (12) 

This way, the total number of iterations is fixed to Ttot/T. The 
coordinates which correspond to the global optimum of each 
iteration are as follows (Figure 4),  
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where miθ  corresponds to the global optimum of the previous 
iteration. The adaptation laws of the centre of the circle are so 
chosen to keep the global optimum found. In other words, the 
circle with the radius ∆ and centre ),( 21 uu is contracted in 

such a manner as to keep ),( 21 mm uu at the same point i.e. 

)0,0(),( 21 =mm uu . So, the adaptation laws are given by, 
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This contraction is depicted in Figure 3. The centre of the 
circle is expected to converge to the global optimum of the 
non-linear map when ∆ reaches to zero.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Contraction of the circle toward the global opt. 

 
The structure of the above mentioned algorithm is presented 
in the following flowchart.   
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Figure 4: Flow chart of the global optimization of two 
input systems using multi-units 

3.2 Convergence to the global optimum 

For the general case, i.e. non-zero values of ε and εθ, it can 
not be guaranteed that the above scheme is indeed global. 
However, in the limiting case, it can be shown that this 
algorithm is capable of avoiding the local optima and 
converging to the global one.  
 
Theorem 1: Consider the multi-unit optimization scheme with 
the adaptation laws (7),(8) and (11), (14), with ε=0 and εθ=0 
If (a) f(.) has a unique global minimum, (b) β<<βθ and (c) 
(u1

**- u10)2+ (u2
**- u20)2≤ ∆0

2 , then u1(∞) =  u1
**  and  u2(∞) = 

u2
**.  

 
Proof:  The proof of this result is based on the fact that there 
are two different time scales in the algorithm. The fast time 
scale is that of θ and ∆θ, while the slow one consists of ∆, u1 
and u2. Initially it will be shown that the fast time scale keeps 
θmi at the global optimum along the circumference of the 
circle. Secondly, assuming this fact, it will be shown that the 

shrinking of the circle leads to the global optimum of the 
problem. In fact, for θmi to always correspond to the global 
optimum, it is very important to have a good time scale 
separation between the two dynamics and the assumption 
β<<βθ is made towards this end. 
To prove that θmi is in fact the global optimum along the 
circle, the proof follows the lines of (Azar et al., 2009a). At 
each iteration (i =1,2,3,… ) the mono-variable global 
optimization along the circumference would lead to,  |θ(t) – 
θi

**| ≤  ∆θ (t), ∀t∈[iT+,(i+1)T-], where θi
** is the angle 

corresponding to the global optimum along the circle at 
iteration “i”. So, when ∆θ →0 , then |θ(t)- θi

**| = 0, θa(iT-)= 
θb(iT-) = θi

** i.e. at the end of the iteration “i”, θmi = θi
**. 

Now, in a slower time scale, note that θmi is the global 
optimum along the circumference of the shrinking circle at 
any time. It will be shown by contradiction that  (u1

**- u1(t))2+ 
(u2

**- u2(t))2≤ ∆2(t), ∀t. Suppose that at time instant t, (u1
**- 

u1(t))2+ (u2
**- u2(t))2> ∆2(t). From the hypothesis, (u1

**- u10)2+ 
(u2

**- u20)2≤ ∆0
2, there exists a time instant t=τ, such that (u1

**- 
u1(τ))2+ (u2

**- u2(τ))2 = ∆2(τ). This means that  the global 
optimum of the map (u1

**,u2
**) is on the circle with centre 

(u1(τ),u2(τ)) and radius ∆(τ). So, the angle search θmi would 
indeed latch on to this point (since the global optimum of the 
map is indeed the global optimum along the circumference of 
the circle). Also, in the next iteration θb(iT+)= θmi , u1b = u1

** , 
u2b = u2

** and, 
0)(. 11 =∆+−∆−=∆−= θθθ ββθθ bab ffsign         (15) 

Note that within the iteration, 0=bθ , since fb < fa  is 
guaranteed by the uniqueness of the global minimum. Also, at 
the end of the iteration, θb will be retained as θmi since it has a 
better function value. Thus, once (u1

**- u1(τ))2+ (u2
**- u2(τ))2 = 

∆2(τ), from there on for all t > τ, u1b = u1
** and u2b = u2

**. 
Since (u1b,u2b)=( u1

**, u2
**) is on the circumference of the 

circle of radius ∆(τ), it can be seen that (u1
**- u1(t))2+ (u2

**- 
u2(t))2 = ∆2(t) for all t>τ, which is a contradiction to the 
assumption (u1

**- u1(t))2+ (u2
**- u2(t))2> ∆2(t). So, it is 

deduced that (u1
**- u1(t))2+ (u2

**- u2(t))2≤ ∆2(t), ∀t. 
Also, note that ∆ is reduced to 0 monotonically, i.e. 

tet β−∆=∆ 0)( . In other words, when ∆ →0, (u1
**- u1(∞))2+ 

(u2
**- u2(∞))2 = ∆2(∞) =0, then u1(∞) =  u1

**  and  u2(∞) = u2
**. 

■ 
 
Remark 1: Similar to what is stated in (Azar et al. ,2009a) , 
the sign function in the adaptation law (7) corresponds to a 
very high gain and induces a non-Lipschitz nature in the 
system. This might cause stiffness in integration. A simple 
solution is to replace the sign function by the hyperbolic 
tangent as shown below. 

( )( )ba ff −∆−= ηβθ θθ tanh          (16) 
where η is a tuning parameter. The lower the value of η, the 
faster will be the integration. However, a low value of  η 
might lead to a situation where the global optimum is missed 
and the algorithm converges to a local minimum. Thus, the 
value of η should be chosen as compromise between accuracy 
and integration time. 
Remark 2: The basic condition for this algorithm to converge 
to the global optimum is (u1

**- u10)2+ (u2
**- u20)2≤ ∆0

2. Since 
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the location of u** is not known a priori, the above condition 
will be satisfied by choosing a large enough the initial value 
for ∆0. The downside of such a choice is that the algorithm 
requires more time to get to the optimum.  
 

4. ILLUSTRATIVE EXAMPLES 

 
Example 1: Consider the following nonlinear static map 
(Ackley's function shown in Figure 5) with a unique global 
minimum at (u1

**, u2
**) = (0,0) and several other local optima 

(Molga et al., 2005).  
 

2 2
2

1 1
1 2

cos(2 )
( , ) 20exp 0.2 exp 20 exp(1)

2 2

i i
i i

u u
f u u
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⎜ ⎟ ⎜ ⎟
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⎝ ⎠ ⎝ ⎠

∑ ∑                                                                                              

(17) 
The important aspect of this example is the presence of equal 
valued and symmetric local optima on its nonlinear map. 

 
Figure 5: Static nonlinear map for Example 1 

 
Figure 6: Evolution of the inputs and ∆ for Example 1 

 
The global optimization algorithm using two identical units is 
applied to optimize this nonlinear system. The initial inputs 
u10 = -1, u20 = -2, and ∆0 = 5 were considered such that the 
global minimum among the several other local ones lie in the 
circle composed by the centre of (u10,u20) and the radius of ∆0. 
The parameters used were β = 0.01, βθ = 1, and ε = εθ =0.001. 

The time evolution of the inputs and ∆ are shown in Figure 6. 
Using the adaptation as in (7) instead of (16) leads to a longer 
execution time of 12.18 sec., 120 iterations and 8200 number 
of function evaluations in contrast to 9.6 sec., 120 iterations 
and 6244 number of function evaluations in the later case with 
η = 1. Increase in execution time can be attributed to the 
increase in stiffness (Azar et al, 2009a).  

 
Example 2: Consider the nonlinear Himmelblau's test 
function of order 4 (Pardalos et al., 2002) where the objective 
function on the global extremum f(3,2)=0 is very close the 
objective functions related to the other local optima,  
f( -3.779310 ,  -3.283186) = 3.7979 e −12,  
f( -2.805118 ,   3.131312) = 1.0989 e −11,  
f(  3.584428 ,  -1.848126) = 8.8944 e −12.  
The static map is depicted in Figure 7. 
 

22
21

2
2

2
121 )7()11(),( −++−+= uuuuuuf               (18) 

 Figure 7: Static nonlinear map for example 2 
 
The key condition to satisfy is the inequality (u1

**- u10)2+ 
(u2

**- u20)2≤ ∆0
2  which is in fact verified by choosing u10 = 3, 

u20 = -1 and ∆0 = 8. The initial condition of u is chosen on 
purpose so as to be as closer to the local minimum which has 
the closest objective function to the global one. The other 
parameters were β = 0.001, βθ = 0.01, ε =εθ=0.001. Applying 
the global optimization algorithm using multiple units makes 
the system input to converge to the global minimum at 
(u1

**,u2
**)= (3,2). 

 

 
Figure 8: Evolution of the inputs, ∆ and θm for Example 2  
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Fig (8) shows the time evolution of the angle θmi . It can be 
seen that the value of this angle evolves depending on the 
polar position of the global optimum found on the 
circonference of the shrinking circle. However, its value 
remains constant within the time interval of each iteration “i”. 
 
It is equally interesting to see the evolution of θmi along the 
inputs and ∆. θmi remains unchanged as long as the global 
optimum found on the circumference of the shrinking circle 
remains unchanged. As soon as the system inputs pass 
through a better global optimum on the shrinking circle 
(t=500 sec), θmi latches on the angle corresponding to this 
point (2.4 rad.). Similarly at t=3500 sec., the system inputs 
find a better comparative global optimum on the 
circumference of the shrinking circle and this time θmi accords 
to the new value 5.27 rad.. Then, θmi remains unchanged until 
the complete contraction of the circle (∆→0). This means that 
the corresponding point to the last value of the angle θmi is the 
unique global optimum of the nonlinear map. It is clear that 
Fig (8) can be changed depending on the initial values of u10 , 
u20, and ∆0 ( the initial circle) but the final converging results 
of the input values will be the same. 
 
Choosing small initial value for offset ∆0 = 2 causes the 
algorithm to converge to the local minimum (u1,u2) = (3.85,-
1.85) instead of the global one. This is because the initial 
circle of (u1- u10)2+ (u2- u20)2 = ∆0

2 does not include the global 
minimum. In fact, the solution corresponds to the global 
minimum of this initial interval. An appropriate choice of η is 
crucial in converging to the global optimum. If a low value of 
η = 1 is chosen, the algorithm is mislead and converges to an 
optimum which is not global (u1,u2) = (3.85,-1.85).  
 

5. CONCLUSIONS 

A model-free, unconstrained global optimization method 
using multi-units was proposed by controlling the centre of a 
shrinking circle on which the gradient is estimated using finite 
difference between two units operating with an offset. 
For two-input systems, the technique was performed on the 
circumference of a circle of reducing radius. The offset 
parameter between the inputs of the two units was 
monotonically and iteratively reduced to zero where the 
radius of the circle was monotonically shrinking in parallel.  
With this, it was shown that it is possible to converge to the 
global optimum of any two dimensional nonlinear static 
objective function, provided the global optimum is present in 
the initial circle composed by the centre of the initial inputs 
and the initial value of the radius. Development of the 
proposed algorithm to systems with more than two degrees of 
freedom and to constrained optimization problems are the 
next steps considered in this research framework. 
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