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Abstract: In this work we present a flexible real-time dynamic optimisation engine that successfully 
decouples the controller design and innovation space into three orthogonal axes given by the model 
formulation, the problem formulation and the solution methods. A simulation of an industrial continuous 
pulping system is used to run several performance studies with an emphasis on the effect of different 
model formulations in various production transition scenarios. 
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1. INTRODUCTION 

Model Predictive Control (MPC) and Real Time 
Optimisation (RTO) are two techniques for Advanced 
Process Control (APC) that use a process model for 
optimisation and control of industrial processes. 
Traditionally, research in these two technologies has focussed 
on exploring different model formulation alternatives 
(Henson, 1998). Within this design space, one research axis 
represents the division between linear and nonlinear models, 
while another axis provides the division between empirical 
and first-principles models. 

Driven by the need to reduce the computational time of large-
scale model-based optimisation techniques in an on-line, real-
time environment, research in the academic community has 
recently shifted towards efficient numerical methods and 
advanced solution strategies (Zavala et al, 2008). 
Interestingly, a research topic that has received little attention 
is the formulation of control and/or optimisation problems by 
operators, and subsequent interpretation of this formulation 
into a mathematical representation to be provided to and 
solved by a numerical solution algorithm (Rolandi & 
Romagnoli, 2008). 

In this work, we change the perspective upon which research 
and development on APC techniques such as MPC and RTO 
is approached. Instead of adopting the conventional focus, we 
visualise the space of APC innovation as being divided along 
three main axes: the model formulation, the problem 
formulation, and the solution methods. 

This idea has been motivated by a vision where flexibility 
and interoperability are the key technological differentiators 
of the next generation of model-based APC platforms. For 
example, such APC engine would allow embedding linear 
models as easily as nonlinear models. Similarly, the APC 
engine would support empirical/semi-empirical models 
derived from identification- or reduction-based techniques, as 
well as rigorous mechanistic models derived from first 

principles. Concurrently, the APC system would allow 
unconstrained, quadratic cost problem formulations or 
general constrained control problems. Finally, this next-
generation APC engine would support discrete- and 
continuous-time formulations interchangeably, and would be 
integrated into the MPC multivariable control and/or RTO 
economic optimisation layers of the APC hierarchy. 

In this work, we present a novel DRTO software platform 
that successfully decouples the three main axes of innovation 
on APC. This DRTO engine is used on a number of case 
studies to reveal the effect of the model formulation, the 
problem formulation and the solution methods. The 
performance of the DRTO engine is analysed on a simulated 
industrial process system. 

2. DRTO ENGINE 

The DRTO engine presented in this work is based on an 
architecture presented elsewhere (Rolandi & Romagnoli, 
2008). In this work, we describe the elements of this 
architecture in some detail. 

2.1 Modelling Engine 

The modelling engine (ME) encapsulates all model-
formulation services needed by the DRTO kernel. Naturally, 
the choice of ME imposes restrictions on the type of models 
that can be embedded in the DRTO engine 

The advanced process modelling package gPROMS, from 
Process Systems Enterprise Ltd, has been chosen as the ME 
for the current implementation. gPROMS is an equation-
oriented modelling system that supports the description of 
hybrid continuous/discrete (HCD) integro-partial-differential-
algebraic systems (IPDAEs) of arbitrary complexity. 

2.2 Models 

Implicit differential-algebraic systems (DAE) are the most 
common class of models arising from first-principles 
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modelling. In general, these models are highly nonlinear due 
to phenomena such as kinetics, transport and equilibrium 
relationships. Linear models are a common class of models 
used in linear constrained/unconstrained MPC. These models 
are obtained by empirical identification or they result from 
linearising nonlinear models around one or more nominal 
operating points. In the former case, this result in a linear 
time-invariant (LTI) model; in the latter case, the model is 
linear time-variant (LTV). gPROMS has a hybrid structural-
and-numerical linearisation algorithm which allows the 
transformation of implicit nonlinear models into explicit, 
linear state-space form. 

2.3 Solution Engine 

gPROMS is both a model server and a solution engine (SE). 
All model-based activities executed via the gPROMS API 
have access to the built-in numerical solution algorithms. 

2.4 Solution Methods 

As a SE, gPROMS provides a number of solver components 
for the solution of common numerical problems arising in 
simulations and optimisations. These are direct sparse linear 
algebra routines (MA28/MA48), a sparse (Quasi-)Newton 
nonlinear solver (SPARSE), a nonlinear solver with a 
proprietary block-decomposition algorithm (BDNLSOL), 
BDF (DASOLV) and IRK (SRADAU) implicit integrators 
(with sensitivity evaluations on request, via an augmented-
system approach), a SQP-NLP solver (SRQPD), as well as 
single-shooting (SS) (CV_SS) and multiple-shooting (MS) 
(CVP_MS) dynamic optimisation (DO) solvers adopting a 
sequential-solution approach (also known as control vector 
parameterisation, or CVP). 

2.5 Problem Definition Manager 

Changes in process conditions that take place at different 
intrinsic time scales and changes to operation specifications 
imposed by operators and production managers are the norm 
in industrial process systems. As a result, the control-and-
optimisation problem specification needs to change 
constantly to reflect these circumstances. The DRTO engine 
adopts an event-based mechanism to deal with these 
situations. In previous studies (Rolandi & Romagnoli, 2008), 
we have found that approximately a dozen different types of 
control events are needed to define typical industrial 
control/optimisation problems in most common situations. 

The translation of these operator-posted control/optimisation 
events into a high-level dynamic optimisation problem is 
executed by the Problem Definition Manager software 
component (PDM), which is also responsible for 
implementing this formulation in the formalism requested by 
the modelling and solution engine. 

Scaling of decision variables is performed automatically by 
gPROMS (and most optimisation routines). Scaling of 
constraints, which is not normally built-in in optimisation 
modules, is performed by the PDM using the same event-
based mechanism. This transformation allows fine control of 

the enforcement of constraints which is needed to improve 
the robustness and efficiency of industrial control problems. 

2.6  Solution and Feasibility Supervisor 

The outcome of the PDM is, in general, a constrained 
dynamic optimisation problem, and the existence of a feasible 
solution is a key issue to be addressed by any industrial 
control application. The Solution-Feasibility Supervisor 
(SFS) is a dedicated component of the DRTO engine for 
monitoring the solution and handling of infeasibilities. The 
SFS is composed by a Solution Interpreter (SI) and a 
Constraint Manager (CM). 

The CM has been built-in with two independent infeasibility-
recovery strategies: i) relaxation or elimination and ii) 
ranking or identification. These individual strategies can be 
combined to create four different constraint-management 
policies. 

The most common recovery mechanism in commercial MPC 
packages is constraint ranking and elimination (Qin & 
Badgwell, 2003). Here, one or more constraints are 
associated to a ranking level and removed from the control 
problem formulation upon infeasibility when their priority is 
below a cut-off level. Constraint identification uses 
information on the constraints’ bounds and values (or their 
Lagrange multipliers, if available) to detect the subset that is 
active at any given iteration. Constraints that are violated are 
either eliminated or relaxed. The relaxation takes place by 
applying factors which are provided in the form of user 
events. 

3. CASE-STUDY AND ANALYSIS OF RESULTS 

3.1Industrial process 

The case study presented in this paper is based on an 
industrial continuous pulping system of a state-of-the-art pulp 
and paper mill. The key unit in this process is a vertical 
tubular reactor with several fluid-phase extraction and 
introduction points along the length of the vessel. The reactor 
is a solid-liquid heterogeneous system with inter- and intra-
particular transport phenomena, where the column of wood 
chips moves continuously down and the fluid phase moves in 
co-current or counter-current flow at different heights. 
Besides the tubular reactor, there is auxiliary heating and 
heat-recovery equipment consisting of nine unit operations 
(condensers, heaters, pre-heaters and a kettle-reboiler), and 
seven transportation and handling devices (the so-called feed 
line). There are around 50 PID control loops. 

From a process perspective, the goal is to maximise the pulp 
yield (Y) at a given production target (P) while maintaining 
the deviation of pulp selectivity (S) from its quality-control 
target below a given threshold. Selectivity is measured in 
terms of the “kappa number” (#K) and it is an indication of 
the proportion of non-cellulosic components present in the 
wood pulp. 
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3.2 First principles model 

Large-scale mechanistic models (that is, models of the order 
of 10,000 variables or more) have seldom been used in 
advanced model-based control systems, with only a few 
examples resulting from academic studies rather than 
industrial applications (e.g. Wisnewski & Doyle, 2001). A 
mechanistic model of the continuous pulping system 
described above has been implemented in gPROMS, 
resulting in a system of approximately 14,000 algebraic, 
1,000 differential equations, and 300 degrees-of-freedom. 

This model is used as the virtual plant for all closed-loop 
simulations. Depending on the model configuration, either 
the full nonlinear model is embedded in the optimiser or a 
reduced-order linear model. The latter is obtained by exact 
linearisation and minimal realisation of the first-principles’ 
nonlinear model at the nominal steady-state starting point. 
Linearisation requires full knowledge of the operating point, 
that is, forcing input trajectories and state variable values of 
the system. In order to satisfy this requirement as well as the 
need for state feedback a perfect observer is implemented. 

While a perfect observer is not feasible in an industrial 
setting, this choice allows us to focus on algorithmic and 
performance aspects and avoid any issues introduced by the 
ubiquitous plant/model mismatch that would be present in 
any real industrial application. 

3.3 Case-studies set up 

In this virtual-plant simulation, the process is initially at 
steady-state and control actions start taking place three hours 
before the scheduled production-rate change. The 
configuration of the control problem is such that the 
manipulated variables (MVs) optimised by DRTO are the 
setpoints of three key PID controllers: the chip meter (CM) 
speed (feed rate of wood chips), and the temperature of the 
lower (LH) and wash (WH) circulation heaters (which 
perform indirect heating of the reactor). Two interior-point 
and two end-point constraints are imposed on the trajectories 
and final values of selectivity and pulp production rate, and 
one path constraint is introduced for the deviation of 
selectivity with respect to its control target. The configuration 
of the time parameterisation is such that the prediction and 
control horizons are set to 7 and 6 hr, respectively, and the 
control window is 1 hr; these settings are representative of 
industrial practice. 

In this work, real-time dynamic optimisation provides the 
setpoints of key loops of the regulatory control system, 
condensing the two intermediate optimisation/control layers 
of a conventional hierarchical control structure (i.e. MPC and 
RTO) into a single, consistent model-based application 
(DRTO). 

3.4 Case-study 1 

In this case study the main target is to control a production-
rate transition from 600.0 tpd to 650.0 tpd. Figures 1 to 3 
show the trajectories of key process variables for this case-
study, for the linear (L) and nonlinear (NL) embedded model. 

Note that the progression of control moves/manipulated 
variables (MVs) is similar for both controllers. However, 
while the NL-controller relies more heavily in the setpoint of 
the LH PID loop (also higher temperatures most of the time –
peak temperature of ~156C), the L-controller uses more 
heavily the setpoint of the WH PID loop (also at higher 
temperatures –peak temperature of ~154C). 

Having a look at the trajectories of controlled variables 
(CVs), the selectivity remains within the control limits at all 
times for the NL-controller (these limits were defined in the 
control problem formulation to be between kappa number 89 
and 91). Overall, the NL-controller and the L-controller 
exhibit similar control performance. 

  

Figure 1: Lower heater (LH), MV. 

 

Figure 2: Wash heater (WH), MV. 

    

Figure 3a: Selectivity (S), CV (as seen by the operators). 
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Figure 3b: Selectivity (S), CV (zoomed-in). 

It is interesting to note that the solution of the control 
problem is feasible for both controllers; this occurs in the 
open-loop computation, as well as in closed-loop, when the 
control moves are applied to the plant. 

The virtual-plant simulation can be used to examine 
optimality of the controllers. The mean integral value of the 
objective function for the NL-controller corresponds to a 
value of 64.98% yield; this compares with 64.95% for the L-
controller. This shows that the NL-controller is optimal 
(locally, global optimality is not guaranteed), and the 
difference of performance amounts to US$50k/year. This 
small difference in profit does not necessarily justify the 
possible additional investment of a NL-controller. 

The good performance of the L-controller is due to fact that 
the plant is reasonably linear in this limited range of 
operation and an accurate model of the plant has been 
obtained by exact linearisation of the first principles’ 
nonlinear model. Also, the prefect observer periodically 
corrects the effects of plant/model mismatch by resetting the 
linear model to the true operating point. 

3.5 Case-study 2 

In this case study the main target is to control a production-
rate transition from 600.0 tpd to 700.0 tpd, which is a more 
significant change to the operating level of the system than 
that examined in case study 1. Figures 4 to 6 show the 
trajectories of key process variables for this case-study, for 
the linear (L) and nonlinear (NL) embedded model. 

 

Figure 4: Lower heater (LH), MV. 

 

Figure 5: Wash heater (WH), MV. 

 

Figure 6: Selectivity (S), CV 

By inspecting the control moves we can see that the L-
controller relies more heavily on changes in the WH 
temperature setpoint as well as higher temperatures. The 
moves of the LH for both controllers show signs of slight 
oscillations which could be interpreted as aggressive control. 

The trajectories of the output/controlled variable selectivity 
also show the aforementioned signs of oscillations. The 
dynamic responses differ qualitatively, but remain within the 
acceptable limits of industrial operation. 

In terms of optimality and feasibility, the NL-controller fails 
to converge on the 3rd optimisation cycle. Interestingly, this 
does not cause a true infeasibility because the infeasible 
response is further down the prediction horizon. During the 
4th /cycle, the NL-controller is able to recover from the 
episode alone if no infeasibility recovery scheme is applied. 

3.6 Case-study 3 

In the previous case-study we encountered the case were the 
NL-controller had an infeasibility on the 3rd cycle. In this 
case study we examine the performance of the two 
infeasibility recovery alternatives discussed in this work. The 
trajectories for identification-and-relaxation (IaR(1)) and 
ranking-and-elimination (RaE(3)) are shown in Figure 7. 

It is clear from this case-study that the differences between 
the two schemes are minimal within the realisation horizon 
(the sequence of successive controls that have actually been 
applied into the plant). It can also be shown that both 
schemes outperform the base-case (without recovery scheme) 
since higher average yields are obtained without violating 
operating constraints. 
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Figure 7: Selectivity (S), CV 

While these results do not allow us to draw conclusions about 
the relative merits of both schemes, we argue that, in general, 
identification is superior to ranking as a constraint-
differentiation scheme. Since elimination is a special case of 
relaxation, we expect that identification-and-relaxation would 
normally outperform ranking-and-elimination. 

3.7 Case-study 4 

This case study is a variation of case study 1. Again, a 
production-rate transition from 600.0 tpd to 650.0 tpd is 
scheduled, this time, 2 hr in advance. However, 2 hr after the 
transition a failure in downstream processing equipment 
triggers a production slow-down to the original rate of 600.0 
tpd, which is enforced 2 hr later. This is a common yet 
challenging operating scenario in integrated pulp and paper 
mills which have low inventories by design. 

The selectivity responses are quite different throughout the 
simulation horizon, While the NL-controller manages to 
boost selectivity from the very beginning, the L-controller 
gives rise to a sharp drop in selectivity and suffers from this 
performance degradation (lower objective function values) 
until it reaches similar levels than the NL-controller does 
around the 4th cycle.  

The NL-controller reacts quickly to the change in the 
operational envelope and achieves such increase of selectivity 
by means of a sharp drop in the temperature setpoint of the 
WH as it can be seen on Figure 10, a claim which can be 
justified from a first-principles perspective. 

  

Figure 9: Selectivity (S), CV; tight tolerance. 

 

Figure 10: Lower heater (LH), MV; tight tolerance. 

3.8 Case-study 5 

 

Figure 11: Selectivity (S), CV; loose tolerance. 

 

Figure 12: Lower heater (LH), MV; loose tolerance. 

This case study is a variation of case study 4. The only 
difference resides in the optimisation tolerance setting, which 
has been relaxed from 1E-4 to 1E-3. In other words, Figures 
9/10 and 11/12 show the responses for tight and loose 
tolerances, respectively, each one for a nonlinear and linear 
controller model. This case study is used to highlight the 
effect of problem configuration in the result of rigorous 
constrained optimisation activities. 

Note that the results of the L-controller at a loose tolerance 
do not differ much from the performance at tight tolerance, 
although there are some minor differences and performance 
is generally better in the latter case. 
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Again, the most difference is seen in the early cycles of the 
transition. At a loose tolerance (Fig 11), the NL-controller 
behaves quite similarly to the L-controller and also suffers 
from a relatively sharp drop in selectivity, although the NL-
controller still performs better overall. 

3.9 Computational performance discussion 

The following tables compile the key computational 
performance indicators for a representative case study. For 
each cycle (#C), we present the overall computational time 
(TC), the number of major nonlinear iteration (#I), the 
number of minor iterations or line searches (#LS), the unit 
cost of computation per major iteration (UC) and the ratio 
between sensitivity evaluations (gradient computations) and 
the total computation time (RSE). 

Table 1. computational statistics; NL-controller 

#C TC #I #LS UC RSE 

1 28.9 6 6 4.8 75 

2 14.4 3 3 4.8 79 

3 14.2 3 3 4.7 79 

4 8.0 2 2 4.0 84 

5 7.6 2 2 3.8 84 

6 3.0 1 1 3.0 - 

7 7.4 2 2 3.7 83 

Mean 11.9 2.7 2.7 4.4 81 

Table 2. computational statistics; L-controller 

#C Time #I #LS UC RSE 

1 2.1 2 2 1.0 82 

2 3.3 3 3 1.1 81 

3 1.9 2 2 1.0 85 

4 1.7 2 2 0.9 85 

5 3.6 3 3 1.2 79 

6 4.0 3 3 1.3 80 

7 3.6 3 3 1.2 80 

Mean 2.9 2.6 2.6 1.1 82 

 

For both controllers, the determining cost is that of sensitivity 
calculations of the augmented system (79-85%). This fact is 
well known in the literature, and has been subject to the 
research of parallel computation of sensitivities (Keeping & 
Pantelides, 1998) which can reduce the computational cost 
significantly. 

On average, the unit cost (per major/minor iteration) of a NL-
controller is 4 times higher than that of a L-controller. The L-
controller takes between 2 to 3 major iterations to converge. 
The NL-controller, on the contrary, takes anything between 1 
to 6 iterations, at an average of 3 iterations approximately. 
The most computationally demanding cycle is the first, since 
the solution is started from an arbitrary set of initial guesses 
for the decision variables. Even in the most expensive 
iteration (NL-controller, 1st), the system can solve the control 
problem in real-time (at a speed up factor of approximately 
2); on average the speed factor can be as high as 6 (NL-
controller) and 20 (L-controller). Such excess computational 
time is a strong incentive for applying real-time dynamic 

optimisation, as well as for the development of advanced 
solution techniques, such as multi-scenario computations 
(Biegler, 2009). 

4. CONCLUSIONS AND FUTURE WORK 

In this manuscript we presented a framework and software 
platform that enables the adoption of different model types, 
solutions methods, and control-and-optimisation strategies 
transparently and effectively. We examined the performance 
of a novel DRTO engine through a number of industrial case 
studies using linear and nonlinear models, different problem 
formulations and different configuration settings. Both 
model-based controllers performed well and were able to 
drive the plant through production transitions satisfactorily. 
While the nonlinear model was optimal, the linear model 
resulted in much faster computational times. The two 
constraint identification and relaxation mechanisms for 
recovery of infeasibilities performed well. Future work will 
involve refinements to this framework as well as the 
development of observers for realistic closed-loop feedback 
with plant/model mismatch. 
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