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Abstract: In this paper an infinite-dimensional LQR control-based design for a system con-
taining linear hyperbolic partial differential equations coupled with linear ordinary differential
equations is presented. The design is based on an infinite-dimensional Hilbert state-space
representation of the coupled system. The feedback control gain is obtained by solving algebraic
and differential matrix Riccati equations that result from an operator Riccati equation solution.
The designed LQR control is applied to a system containing a continuous stirred tank reactor
(CSTR) and a plug flow reactor (PFR) in series with the recycle-rate from PFR to CSTR as
controlled variable. The LQR controller’s performance is evaluated by numerical simulation of
the original nonlinear system.
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1. INTRODUCTION

Many chemical engineering processes are modeled by or-
dinary differential equations (ODEs) as they can be as-
sumed to be lumped parameter systems. On the other
hand, there are chemical processes which take place in
unit operations such as packed bed and tubular reactors,
which are distributed in nature and described by partial
differential equations (PDEs). Frequently, more complex
unit operations involve both lumped parameter system
(LPS) and distributed parameter system (DPS) model
description. These systems are modeled by a set of cou-
pled partial differential and ordinary differential equations.
For example, in a fluidized bed reactor, mass and energy
balances are described by PDEs while variations of void
fraction is represented by an ODE. Frequently, the models
of distributed and lumped parameter systems are coupled
through their boundaries. For instance, in a jacket-cooled
fixed-bed reactor, the reactor is modeled by a set of PDEs,
while the jacket may be described by an ordinary differen-
tial equation.

The majority of control research has focused on lumped
parameter systems and numerous control techniques are
available for these systems. On the other hand, in
distributed parameter systems most research is moti-
vated by the system containing pure PDEs (Ray (1980),
Christofides (2001)). The most interesting approaches
within these research activities are those that directly
account for the infinite-dimensional properties of the dis-
tributed system in the controller synthesis, e.g., linear
quadratic methods (see Curtain and Zwart (1995)) and
sliding mode control approach (see Orlov and Utkin
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(1987)). Research on controlling mixed distributed and
lumped parameter systems is scarce. Most research in this
area attempts to solve the optimal control problem by
using calculus of variations (see Hiratsuka and Ichikawa
(1969) and Tzafestas (1970)) or by using dynamic pro-
gramming (Thowsen and Perkins (1973) and Thowsen and
Perkins (1975)).

A classical method in the optimal feedback controller
synthesis is the well known Linear Quadratic Regulator
(LQR). The objective of a LQR controller is to drive a
linear system to a desired state by optimizing a quadratic
performance index. Solution of the infinite-horizon LQR
control problem for finite-dimensional (lumped parameter)
systems involves solving an algebraic matrix Riccati equa-
tion. For infinite-dimensional (distributed parameter) sys-
tems there are two approaches. In the first method, which
is called spectral factorization, the control law is obtained
via solving an operator Diophantine equation (Callier and
Winkin (1990)). This approach is used by Aksikas et al.
(2007) to control the temperature and the concentration
in a plug flow reactor. In the second approach, an algebraic
operator Riccati equation is solved for a given state-space
model (Curtain and Zwart (1995)). This approach was
used for a particular class of hyperbolic PDEs (Aksikas
et al. (2008)). This work was then extended to a more
general class of hyperbolic systems by using an infinite-
dimensional Hilbert state-space setting with distributed
input and output (Aksikas et al. (2009)).

In this paper, the aforementioned work is extended to
a system of first-order hyperbolic PDEs coupled with
ODEs. In such systems, the input variable affects the
distributed system through the lumped parameter system.
The control objective is to drive the states of both lumped
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and distributed parameter systems to the equilibrium
point in an optimal way.

This paper is organized as follows. In section 2, general
formulation for a system containing a set of coupled linear
first-order hyperbolic PDEs and linear ODEs is described.
The system is then transformed into the Hilbert space
and state transformation is used to make homogenous
boundary condition. Section 3 focuses on designing an
optimal feedback control. To this end, the operator Riccati
equation is computed. This results in four matrix Riccati
equations, which should be solved to obtain state feedback
gain. In order to evaluate the performance of the proposed
method, in section 4, the method is applied to a system
containing a CSTR and a PFR in series with the recycle-
rate as a control variable. First, the system is linearized
around the equilibrium point. Then, the feedback control
gain is obtained by solving the related matrix Riccati
equations. Finally, the designed control policy is applied to
the nonlinear system and simulation results are discussed.

2. FORMULATION OF THE PROBLEM

This paper addresses a control synthesis applied to the
distributed parameter system which is coupled with the
lumped parameter system through the boundaries. In
these systems, the control variable affects the boundaries
of the distributed system indirectly trough the lumped
system. For example in a jacket-cooled fixed-bed reactor,
the flow rate of the coolant (control variable) affects the
boundary of the reactor (distributed system) through the
jacket (lumped system). Mathematical model of these pro-
cesses involve a set of coupled PDEs and ODEs. When
diffusion process can be neglected or it is small in compar-
ison to convection process, the distributed system is stated
by a set of hyperbolic PDEs. Other important instances
for these kinds of systems are lumped parameter systems
followed by a transportation lag in which the pure delay
is modeled by PDEs and the lumped system is modeled
by ODEs (Hiratsuka and Ichikawa (1969)). The general
mathematical model for these systems is given as follows:

∂xd
∂t

(z, t) = V
∂xd
∂z

(z, t) +Mxd(z, t) (1)

dxl
dt

(t) = Axl(t) +Bu(t) (2)

y(z, t) = C0[xd(z, t), xl(t)]T (3)
with the following boundary and initial conditions:

xd(0, t) = xl(t) (4)
xd(z, 0) = xd,0(z) (5)
xl(0) = xl,0 (6)

where, xd(., t) ∈ L2(0, 1)n and xl(t) ∈ Rn denote the state
variables for the distributed and the lumped parameter
systems, respectively, y(z, t) = [yd(z, t), yl(t)]T , yd(., t) ∈
Y := L2(0, 1)p is the output variable for the distributed
system, yl(t) ∈ Rp×p is the output variable for the lumped
system, z ∈ [0, 1] is the spatial coordinate, t ∈ [0,∞] is the
time, u(t) ∈ Rm is the input variable, V = −υI ∈ Rn×n
with υ > 0 is a symmetric matrix, M is a real continuous
space varying matrix, B ∈ Rn×m is a real matrix, C0 =[
S0 0
0 S0

]
with S0 ∈ Rp∗n, xd,0 is a real continuous space

varying vector, and xl,0 is a constant vector.

The above system can be stated as an infinite-dimensional
state-space system in the Hilbert space H = L2(0, 1)n
(Curtain and Zwart (1995)):

ẋd(t) = A xd(t) (7)
ẋl(t) = Axl(t) +Bu(t) (8)
y(t) = C̄[xd(t), xl(t)]T (9)
Bxd(t) = xl(t) (10)

Here A is a linear operator defined as:

A h(z) = V
dh

dz
+Mh (11)

where h(z) is a smooth function on [0, 1], with the following
domain:

D(A ) = {h(z) ∈H : h(z)and
dh(z)
dz

are abs. cont.,

dh(z)
dz

∈H } (12)

B is a linear boundary operator defined as:
Bh(z) = h(0) (13)
D(B) = {h(z) ∈H : h(z) is abs. cont.} (14)

C̄ is given by C̄ = C0I, where I is the identity operator.

The boundary condition defined in (10) is inhomogeneous.
In order to produce a homogenous boundary condition, we
apply boundary control transformation (see Curtain and
Zwart (1995) and Fattorini (1968)). We assume that there
is a function B(z) such that for all xl(t), Bxl(t) ∈ D(A )
and:

BBxl(t) = xl(t) (15)
By assuming that xl(t) ∈ L2(0,∞)n is sufficiently smooth
and using the state transformation ω(t) = xd(t) −Bxl(t)
(Curtain and Zwart (1995)), we have:

ω̇(t) = ẋd −Bẋl
Then:

ω̇(t) = Fω(t) + A Bxl(t)−Bẋl
ω(0) = ω0 (16)

where ω0 = xd,0 −Bxl,0 ∈ D(F ) and:
Fh(z) = A h(z)

The domain of F is defined as:
D(F ) = D(A ) ∩ ker(B) = {h(z) ∈H :

h(z) and
dh(z)
dz

are abs. cont.,
dh(z)
dz

∈H ,

and h(0) = 0} (17)
By combining (8) and (16) we obtain infinite-dimensional
Hilbert state-space representation of the DPS-LPS as:[

ω̇(t)
ẋl(t)

]
=
[
F A B−BA
0 A

] [
ω(t)
xl(t)

]
+
[
−BB
B

]
u

y(t) = C[ω(t), xl(t)]T

ω(0) = ω0, xl(0) = xl,0 (18)

where C = C̄

[
I B
0 I

]
. We define state variables of the above

system as x(t) = [ω(t), xl(t)]T .
Remark 1. In the case of state LQR control, the outputs
are the same as the states and therefore S0 = I.
Remark 2. In Aksikas et al. (2009), it is proven that given
V < 0, operator F generates an exponentially stable

Copyright held by the International Federation of Automatic Control 714



C0−semigroup. Therefore, If matrix A is stable, operator[
F A B−BA
0 A

]
provides a stable C0−semigroup.

3. OPTIMAL CONTROL DESIGN

In this section we are interested in LQR control design for
the DPS-LPS system according to the infinite-dimensional
state-space representation of (18). The design is based on
the minimization of an infinite-horizon quadratic objective
function that requires the solution of an operator Riccati
equation (Curtain and Zwart (1995); Bensoussan et al.
(2007)). Solution of the operator Riccati equation of the
DPS-LPS results in a set of algebraic and differential
matrix Riccati equations. The optimal feedback gain can
then be found by solving the equivalent matrix Riccati
equations.

Let us consider the following objective function:

J(x0, u) =
∫ ∞

0

(〈Cx(t), PCx(t)〉+ 〈u(t), Ru(t)〉)dt (19)

where x0 ∈ H is an initial condition, P = P0I ∈ L(Y ),

P0 =
[
P11 P12

P21 P22

]
∈ R2p×2p is a positive semi-definite

symmetric matrix, and R ∈ Rm×m is a positive symmetric
matrix. The minimization of the above objective function
subject to the system of (18) results in solving the follow-
ing operator Riccati equation (Aksikas et al. (2009) and
the references therein):

[A∗Q0 +Q0A+ C∗PC −Q0BR−1B∗Q0]x = 0 (20)

where A =
[
F A B−BA
0 A

]
, B =

[
−BB
B

]
and Q0 ∈

L(H ) is nonnegative self-adjoint operator. The above op-
erator Riccati equation has a unique solution Q0. The min-
imum cost function is given by J(x0, uopt) = 〈x0, Q0x0〉
(see Curtain and Zwart (1995); Bensoussan et al. (2007)).
For any initial condition x0 ∈H the unique optimal con-
trol variable uopt, which minimizes the objective function
of (19), is obtained on t ≥ 0 as:

uopt = Kx(t) (21)
where

K = −R−1B∗Q0 (22)
Under this condition, A+ BK generates an exponentially
stable C0−semigroup (Curtain and Zwart (1995)).

Based on the form of operator A in (18), we consider the
following solution:

Q0 :=
[
Φ(z)I 0

0 ΨI

]
(23)

where Φ(z),Ψ ∈ Rn×n are positive self-adjoint matrices.
By substituting for A, B, C, and Q0 in (20), we have:

F ∗Φ + ΦF + S∗0P11S0 − ΦBBR−1B∗B∗Φ = 0 (24)
Φ(A B−BA) + S∗0P12S0 + ΦBBR−1B∗Ψ = 0 (25)
(A B−BA)∗Φ + S∗0P21S0 + ΨBR−1B∗B∗Φ = 0 (26)
A∗Ψ + ΨA+ S∗0P22S0 −ΨBR−1BΨ = 0 (27)

Equation (24) is a differential matrix Riccati equation. We
assume that the matrix V = −υI, υ > 0 is diagonal with

general diagonal elements. In this condition, (24) can be
solved by the following set of ODEs (Aksikas et al. (2009)):

V
dΦ
dz

= M∗Φ + ΦM + S∗0P11S0 − ΦBBR−1B∗B∗Φ

Φ(1) = 0 (28)
Equation (27) is an algebraic matrix Riccati equation
which can be easily solved for finding Ψ. Equation (26)
is adjoint of (25) and therefore these two equations are
the same. Equation (25) can be satisfied by using elements
of matrix P12 such that matrix P0 remains positive semi-
definite. We can derive the following equation from (25):
S∗0P12S0 = −ΦV − ΦMB + ΦBA

− ΦBBR−1B∗Ψ (29)

Proof. B can be found from (15) as:
BB = I (30)

Then:
[B(z)]z=0 = I,B(z) = I + zI ∈ D(A ) (31)

By using (11) we have:

A B = V
dB

dz
+MB (32)

Let us substitute expression for B into (32), which yields:
A B = V +MB (33)

By substituting for A B in (25), we obtain (29). 2

Remark 3. In the case of state LQR control where S0 = I,
the left-hand side of (29) reduces to P12.

The solution procedure for the LQR problem is:

• Choose weighting matrices P11, P22, and R
• Solve (27) and (28) (algebraic and differential matrix

Riccati equations) for finding Ψ and Φ
• Find P12 from (29) and we check whether matrix P0

is positive semi-definite or not
• In the case that P0 is not positive semi-definite we

choose another P11 and P22 and resolve (27) and (28)
• Calculate the feedback gain from (22)

It should be noticed that since matrix P0 is symmetric,
P12 = P21.
Remark 4. P0 can be ensured to be positive semi-definite
by always selecting P22 � P11.

4. CASE STUDY

For the purposes of illustrating the results derived in
previous sections, we consider a CSTR-PFR configura-
tion shown in Fig. 1. This system includes a PFR as a
distributed parameter system and a CSTR as a lumped
parameter system. The combination of CSTR and PFR
are used as an optimal reactor network for some complex
chemical reactions (e.g. Chitra and Govind (1984)). It is
also applied for some polymerization processes (e.g. Chen
(1994)).

The following reaction takes place in both CSTR and PFR:
A+B −→ 2C, −rA = kCACB

The control objective is to control concentrations of all
components in CSTR and PFR by using recycle-rate as
the control variable.
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Fig. 1. CSTR-PFR system

Table 1. Dimensionless groups used in the case study

Constant Expression Value

K2
kC0LR

υ
0.3

K3
LRFin
υVs

7.67

In order to model the above process, we make the following
assumptions:

• The reaction is isothermal
• CSTR volume is constant
• Inlet flow (Fin) is constant
• Diffusion is negligible in the PFR
• There are no transportation lags in the connecting

lines
• Flow velocity in the PFR is constant with respect to

spatial coordinate

In this condition the dimensionless mass balance for the
system would be:
∂xd,i(z̄, t̄)

∂t̄
= −∂xd,i(z̄, t̄)

∂z̄
+ νiK2xd,1(z̄, t̄)xd,2(z̄, t̄) (34)

dxl,i(t̄)
dt̄

= K3[xin,i + rxd,i(1, t̄)− (1 + r)xl,i]

+ νiK2xl,1xl,2 (35)
With the following boundary and initial conditions:

xd,i(0, t̄) = xl,i (36)
xd,i(z̄, 0) = xd,i,e(z̄) (37)
xl,i(0) = xl,i,e (38)

where subscripts i = 1, 2, 3 denotes components A,B, and
C, respectively, xd,i(z̄, t̄) = Ci(z,t)

C0
is the dimensionless con-

centration of the components in PFR, xl,i(t̄) = Cs
i (t)
C0

is the
dimensionless concentration of the components in PFR,
z̄ = z

LR
∈ [0, 1] is the dimensionless spatial coordinate,

t̄ = υt
LR
∈ [0,∞] is the dimensionless time, υ is the fluid

velocity in the PFR, r is the recycle-ratio, ν is the stoi-
chiometric coefficient, subscribe e denotes the equilibrium
point, and K2 and K3 are dimensionless groups which are
defined in table 1.

We specify the desired concentration of the components
at the end of the PFR to obtain desired equilibrium con-
centration profiles through the PFR and also equilibrium
concentrations in the CSTR. Under this condition the inlet
dimensionless concentrations of components A (xin,A), B
(xin,B), and C (xin,C) are 4, 3, and 0, respectively. The
steady-state concentration profiles in the PFR is shown in
Fig. 2. The steady-state concentration of each component
in the CSTR is equal to the concentration of the corre-
sponding component at the inlet of the PFR (see Fig. 1
and 2).

Now, the system can be linearized around the equilibrium
point to obtain the system of (1) and (2). The linearized
system can then be transformed into the system of (18).

Fig. 2. Steady-state concentration profiles in the PFR

4.1 LQR Design

In this case study the control objective is to control the
concentrations of all components and therefore, S0 = I3.
In order to design LQR control for this system, first, we
choose P11 = I and R = 1 and we find Φ by solving the
set of ODEs in (28) (differential matrix Riccati equation).
Then by choosing P22 = I, we obtain matrix Ψ from (27)
(algebraic matrix Riccati equation). We use MATLAB for
solving (27) and (28). We obtain P12 from (29) and we
check whether matrix P0 is positive semi-definite or not.
After reselecting matrices P11 = 20I and P22 = 100I we
obtain P12 such that matrix P0 is positive semi-definite.
Then we find the feedback gain from (22) as:

K = B∗B∗Φ(z)−B∗Ψ (39)

4.2 Simulation Results

In this work gPROMS has been used to solve (34) to (38).
Orthogonal collocation on finite element method is used to
solve the coupled PDEs-ODEs system. In order to evaluate
the performance of the designed LQR, we used an arbi-
trary initial conditions [xl,A(t̄), xl,B(t̄), xl,C(t̄)] = 0 and
[xd,A(z̄, t̄), xd,B(z̄, t̄), xd,C(z̄, t̄)] = 0.2z̄2. We implemented
the designed LQR controller to the original non-linear
DPS-LPS. Fig. 3 to 5 show the simulation results for the
closed-loop concentrations profiles in the PFR. It can be
observed that the distributed states converge quickly from
the arbitrary initial condition to the chosen equilibrium
profile shown in Fig. 2. Simulation results for the closed-
loop concentration changes in the CSTR is shown in Fig. 6.
As it can be seen, the lumped states also converge quickly
to the chosen equilibrium points from the selected initial
condition. Finally, the variation of the control input is
shown in Fig. 7.

5. CONCLUSION

In this work, LQR control problem for a class of coupled
distributed and lumped parameter system was solved.
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Fig. 3. Closed-loop concentration distribution for component A in
the PFR

Fig. 4. Closed-loop concentration distribution for component B in
the PFR

The system includes a set of hyperbolic PDEs coupled
with a set of ODEs at the boundary condition. First,
the system stated in a state-space form in the Hilbert
space. Then, by introducing a new state, the system was
transformed to a new state-space form with a homogenous
boundary condition. The LQR control problem formulated
and solved by converting the operator Riccati equation
into the equivalent algebraic and differential matrix Riccati
equations. The designed LQR was applied to a CSTR-PFR
configuration and numerical simulation was performed by
implementing the control system on the original non-linear
process.
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