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Abstract: Control performance assessment, or CPA, is an increasingly vital tool to quantify
the performance of industrial control loops. While most of the research and commercial activity
in CPA has been applied to linear systems to date, those researchers investigating nonlinear
systems fall into one of two groups. The first group focussed on the diagnosis of a common specific
nonlinearity, namely valve stiction (A. Horch, 1999, M.A.A.S. Choudhury and S.L. Shah and
N.F. Thornhill and David S. Shook, 2006, Nina F. Thornhill and Alexander Horch, 2007), while
the second group tried to establish the minimum variance performance lower bound (MVPLB)
(T.J. Harris and W. Yu, 2007, Yu et al., 2008, 2009, 2010). In this paper we will continue to
investigate CPA for a popular and versatile class of nonlinear model; the Hammerstein-Wiener
(HW) model. Since the minimum performance lower bound is hard to establish for nonlinear
systems, we propose two new performance indices which can be reliably estimated from the
routine closed loop data. These indices can be used in a manner similar to the standard linear
CPA performance index. The estimates are obtained by fitting the output data to a nonlinear
autoregressive and moving average (NARMA) model. The results of two simulation examples
illustrate that the proposed methodology is efficient and accurate for the class of HW models.

Keywords: Control performance assessment, Hammerstein-Wiener model, Static nonlinearity.

1. INTRODUCTION

On a recent site visit to a major dairy plant, we found
over 500 control loops were under the maintenance su-
pervision of a single instrument engineer. At that ratio,
which from anecdotal evidence is by no means unusual,
a realistic period between loop inspections is in the order
of years. Consequently it is not surprising that engineers
are overwhelmed by the sheer number of loops that need
attention on any typical industrial processing plant as
noted by control audits (Bialkowski, 1998, Desborough and
Miller, 2002).

Control performance assessment, or CPA, is a technology
to diagnose and maintain operational efficiency of control
systems developed in a direct response to address this in-
creasingly important economic problem. CPA is routinely
applied in the refining, petrochemicals, pulp and paper and
the mineral processing industry as noted by Qin (1998),
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T.J. Harris (1999), Huang and Shah (1999), M. Jelali
(2006), although these and many related publications, are
primarily restricted to linear systems.

In practice, industrial control loops invariably include
nonlinearites from the control valve, the measurement, or
the process itself. The estimates of the minimum variance
performance lower bound (MVPLB) and the performance
index using the linear CPA techniques may be distorted
by these nonlinearities. To deal with this situation, recent
research has tried to extend CPA into nonlinear systems.

In the case of nonlinear systems, T.J. Harris and W.
Yu (2007) superimpose a nonlinear dynamic model to an
additive linear or partially nonlinear disturbance. It is
shown that a minimum variance feedback invariant exists
for a class of nonlinear models and the MVPLB can be
estimated from routine operating data. Continuing this
idea, estimations of the MVPLBs for the moderate valve
stiction cases are proposed by Yu et al. (2008, 2009).
These applications are based on one general nonlinear
structure: nonlinearity in the dynamics caused by a static
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nonlinearity from manipulated variables plus an additive
disturbance which is in form of an ARMA model.

In this paper, we will extend the CPA to block-oriented
nonlinear models, Hammerstein-Wiener models (shown in
Fig. 1). Nonlinear block-oriented models consist of the in-
terconnection of a linear time invariant (LTI) systems with
static, or memoryless, nonlinearities. This class includes
Hammerstein models, Wiener models and combinations
of the two (Haber and Unbehauen, 1990, Pearson, 1999).
Such block-oriented nonlinear descriptions are very use-
ful modelling input/output nonlinearities and have been
implemented many industrial processes (i.e. Gomez and
Baeyens (2004), Zheng and Zafiriou (2004), Averin (2003),
Sung et al. (2008)).

For the linear systems, the MVPLB can be estimated
through the Impulse Response Functions (IRF) since there
is a direct relationship between the impulse response and
the variance. It is not true for nonlinear systems. The
general form of MVPLB for the nonlinear systems may be
very complex and it is difficult to estimate. In this paper,
we proposed two alternative performance indices.

The layout of the paper is as follows. In Section 2, block-
oriented nonlinear systems with additive disturbances are
introduced. Section 3 describes the first performance in-
dex. Section 4 outlines the way to estimate the first perfor-
mance index and proposed the second performance index.
In section 5, two simulations are used to illustrate the
proposed methodology. This is followed by a discussion and
conclusions highlighting both the limitations and potential
of the proposed methods.

2. PROCESS DESCRIPTION

We assume the plant can be adequately modelled by a
Hammerstein-Wiener model (shown in Fig. 1) as,

yt = N2(xt) (1)

xt = wt + dt (2)

wt =
B(q−1)

A(q−1)
q−bvt (3)

vt = N1(ut) (4)

where A(q−1) and B(q−1) are polynomials in the backshift
operator q−1, and b is the time delay of the system. ut and
yt are the process input and output respectively; the inter-
nal signals vt, wt and xt are nonmeasurable. The functions
N1 and N2 represents the static nonlinearities for input
and output respectively. The disturbance dt is modeled as
the output of a linear Autoregressive-Integrated-Moving-
Average (ARIMA) filter driven by white noise at with zero
mean and variance σ2

a of the form,

dt =
θ(q−1)

φ(q−1)∇h
at (5)

where ∇
def
= (1− q−1) is the difference operator and h is a

non-negative integer, typically less than 2. The polynomi-
als θ(q−1) and φ(q−1) are monic and stable.

In a process control loop, the HW model can be motivated
by considering the input nonlinear block N1 such as such
as equal percentage valve characteristics, quantisation
due to pulse-width modulated controllers and the output
nonlinear block N2 such as thermocouple or thyristor

Static
nonlinearity

Linear
dynamics

B/A

dt

ut wt yt

L N2

Static
nonlinearity

N1

vt xt

Fig. 1. Hammerstein-Wiener model for this paper

transducer calibration curves. Mathematically, the HW
model includes both Hammerstein and Wiener models
as its special cases. The disturbance dt is placed before
the output static nonlinearity block N2, which is different
from the usual assumption that the disturbance is additive
to the output after N2 (see Fig. 2). In some instances
this disturbance model is more realistic from a process
operation point of view and has been discussed by Zhu
(2002), Gomez and Baeyens (2004), Hagenblad et al.
(2008). Although, in this HW model we don’t include
the measure noise, it will not reduce the contribution of
this paper. The reasons are i) in practice, the influence of
process disturbances i.e. dt in our case, in general, is much
greater than the measurement noise; ii) current advances
of sensor techniques can provide very good accuracy.

Static
nonlinearity

Linear
dynamics

B/A

dt

ut xt yt

L N2

Static
nonlinearity

N1

vt

Fig. 2. Hammerstein-Wiener model with a different distur-
bance structure

3. PERFORMANCE INDEX FOR HW MODELS

The basis for MVPLB was developed by T.J. Harris (1989)
where it was shown that the MVPLB for linear systems
could be estimated from routine closed-loop data provided
the process delay is known in advance. The underlying
theory relies on the development of minimum variance con-
trollers, outlined by Åström (1970) and Box and Jenkins
(1970), and the existence of a feedback invariant (T.J. Har-
ris, 1989). The feedback invariant is a dynamic component
of the closed-loop system that is not affected by the feed-
back. In the case of linear systems, the feedback invariant
can be easily recovered from a time series description of the
closed-loop system. The feedback invariant is then used to
estimate the variance of the output that would be achieved
if a minimum variance controller were to be implemented.

The derivation of the minimum variance controller with
respective to xt for a process described by Eqs (2)-(4) is
straightforward (Grimble, 2005, T.J. Harris and W. Yu,
2007). The series xt+b can be written as:

xt+b =
B(q−1)

A(q−1)
N1(ut) + xss + dt

=
B(q−1)

A(q−1)
N1(ut) + dt+b|t + xss + et+b|t

= xt+b|t + xss + et+b|t (6)
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where xss is a constant value (If there is no offset and
disturbance, N2(x

ss) = ysp), dt+b|t is the b-step ahead
prediction in form of,

dt+b|t =
Pb(q

−1)

φ(q−1)∇h
at (7)

and et+b|t is the b-step ahead prediction error as,

et+b|t = (1 + ψ1q
−1 + · · ·+ ψb−1q

−(b+1))at+b (8)

Pb(q
−1) is a polynomial in the backshift operator obtained

by solving the Diophantine equation:

θ(q−1)

φ(q−1)∇h
= 1+ψ1q

−1+ · · ·+ψb−1q
−b+1+ q−b Pb(q

−1)

φ(q−1)∇h

(9)
From Eqn. (6), we can find that the b-step prediction error,
et+b|t, is the control invariant. The control signal which
results in the minimum achievable variance in the xt can
be obtained by solving the following relation:

B(q−1)

A(q−1)
N1(ut) + dt+b|t = 0 (10)

Therefore, xt under minimum variance control, xMV , will
depend on only the most recent b past disturbances,

xMV = xss + et+b|t (11)

The process output under this MVC is

y⋆ = N2(x
MV) (12)

The output y⋆ is not precisely the minimum variance
output, yMV, as it is generally not true that yMV = y⋆.
The predictor y⋆ is often referred to as a naive predictor,
(Terasvirta et al., 2005), and has the advantage that it is
easier to compute. Hence we will use the variance of y⋆ as
the performance index for HW models

η =
σ2
y⋆

σ2
y

(13)

in place of σ2
yMV .

Remarks:

• The variance of et+b|t will never be greater than the
variance of xt+b.

• For linear systems, the closed-loop setpoint, ysp, will
not affect the MVLPB. However, it does not hold
for the nonlinear systems, since the variances of the
N2(x

ss + et+b|t) with the different values of xss and
same et+b|t will be different.

• For linear systems, the performance index is bounded
in the interval [0,1], and this should also hold for our
performance index.

To justify this assertion we provide the following approx-
imate expansion. If we assume E[xMV] = xss, then the
denominator of the performance index in Eqn. (13) is

σ2
y = var(yt+b) = var (N2 (xt+b))

= var
(
N2

(
xt+b|t + xMV

))
(14)

Expanding this last term as a Taylor series following the
‘Delta method’ gives the variance approximation as

σ2
y ≈

[

∂N2(xt+b)

∂xt+b|t

∣
∣
∣
∣ xt+b|t=0

xMV=xss

]2

var(xt+b|t)+

[
∂N2(xt+b)

∂xMV

∣
∣
∣
∣ xt+b|t=0

xMV=xss

]2

var(xMV)

︸ ︷︷ ︸

≈σ2

y⋆

(15)

which shows that σ2
y must always be ≥ σ2

y⋆ and hence the
index is bounded from 0 to 1.

4. ESTIMATING THE PERFORMANCE INDEX

4.1 Identifying the NARMA model

Coupling the HW model given in equations 1–4 with a
feedback controller of the form ut = γ((yt−ysp), · · · , (yt−tu−
ysp)), we get the closed loop as shown in Fig. 1.

dt

ut ytysp HW
Process−

Controller
Gc

Fig. 3. Closed-loop system

This process is a class of nonlinear systems known as the
Nonlinear AutoRegressive andMoving Average (NARMA)
model (Leontaritis and Billings, 1985a,b) and has been
widely used for identifications of many nonlinear systems.
Several methods have been proposed for this purpose
such as iterative least-squares, Ding and Chen (2005),
Orthogonal Least Squares (OLS) methods (Chen et al.,
1989) and Fast Orthogonal Search (FOS) methods (Ko-
renberg, 1988). Use of Artificial Neural Network (ANN)
models to approximate the NARMAX models is discussed
in (Terasvirta et al., 2005, Chen and Billings, 1992).

Since the disturbance term is generally unmeasured, the
identification of this NARMA model will require an itera-
tive approach. The identification procedures will be: i) set
the initial sequence at by fitting a linear model or setting
the at to zero, ii) identify the NARMAR model, iii) replace
the initial sequence at by the prediction errors or residuals,
vi) repeat the steps ii) and iii) until a certain identification
criteria is achieved.

One popular criteria for NARMA model identification is
Akaike’s Information Criterion AIC(s) Chen et al. (1989):

AIC(λ) = K ln σ̂2
Ξ +M · λ (16)

where M is the number of the model parameters, K is
the number of outputs and σ̂2

Ξ is the residual error. λ is
a positive value chosen to provide a penalty for model
complexity. Using statistical arguments, a value of λ = 4
is recommended in (Chen et al., 1989, Leontaritis and
Billings, 1987).

We use the program nlarx from the Matlab System
Identification Toolbox to estimate the NARMA model. In
this function, the dynamic structure and the nonlinearity
estimators are the two main design choices. The choice of
nonlinearity estimators is very often arbitrary and needs
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several trials before getting a satisfactory result. Readers
are referred to Ljung et al. (2007) or the Matlab help
manual for implementation details.

4.2 Estimating the MVPLB and performance Index

The closed-loop of HW models can identified in the
NARMA model using the techniques discussed in Sec-
tion 4.1 as,

yt = F (yt−b, ..., yt−ty , at, ..., at−ta , x
ss) (17)

If the process is controlled by the minimum variance
controller defined in Eqn. (10), the process output at time
t+ b is equal to,

yt+b = F (ysp, ..., ysp, at+b, ..., at+1, 0, ..., 0, x
ss) (18)

which should be equal to y⋆ = N2(x
MV) in Eqn. (12).

We can establish the output variance analytically following
the definition
∫ ∞

−∞

...

∫ ∞

−∞
︸ ︷︷ ︸

b

(yt+b − ȳt+b)
2 f(at+b, ..., at+1) d(at+b)...d(at+1)

︸ ︷︷ ︸

b

(19)

where f(·) is the pdf function. However given the arbitrary
nature of the nonlinear function F and the high dimen-
sion integrals, it will be difficult to obtain the analytical
solution from Eqn. (19). A simpler numerical strategy is
to use a Monte Carlo method to estimate the variance of
yt+b with

σ̂2
y⋆ =

1

m− 1

m∑

i=1

(
F (ysp, ..., ysp, a

i
t+b, ..., a

i
t+1, 0, ..., 0, x

ss)

−F (ysp, · · · , ysp, 0, .., 0, x
ss))

2
(20)

The proposed method to estimate the MVPLB can also be
applied on the Hammerstein or Wiener models since they
are simply special cases of the HW model.

4.3 An alternative performance index for nonlinear systems

We can write the output in Eqn. (17) as yt+b = N2(x1, x2)
where x1 includes the disturbances entering the system
after time t, and x2 includes anything prior to, and
including time t. We know that these two groups are
uncorrelated. Using an analysis of variance (ANOVA)
method, the variance of output, y can be decomposed as
(Harris and Yu, 2010),

var(y) = Vx1
+ Vx2

+ Vx1,x2
(21)

where the Vxi
i = 1, 2 denotes the main effect of xi on

the var(y) and Vx1,x2
is the interaction contributing to the

var(y) that is not accounted for the main effects Vx1
and

Vx2
. Consequently, a suitable performance index is defined

as

η1 =
Vx1

σ2
y

(22)

Remarks:

• The term Vx1
depends on the controller used.

• Vx1
6= σ2

y⋆ except when the closed loop is controlled
by the minimum variance controller with respect to
x defined in Eqn. (10).

• Vx1
6= σ2

yMV again except when the closed loop is

controlled by the minimum variance controller with
respect to y.

• The performance index is strictly bounded in [0, 1]. If
η1 reaches 1, it means that the variance of outputs is
contributed mostly by the x1, so the system controller
is close to the minimum variance controller.

• The estimation of the performance index in Eqn. (13)
requires one to estimate the MVPLB, xMV, with
respect to x first. It may become very difficult as
it is necessary to set xt+b|t = 0. However as the
alternative performance index in Eqn. (22) does not
need to estimate xMV, it may be more suitable for
nonlinear systems where one does not know the model
structure.

5. SIMULATION EXPERIMENTS

The purpose of this section is to demonstrate the proposed
method to estimate the MVPLB or alternatively the
performance index for a class of nonlinear HW models.
In the first example, a Wiener model is used to test the
proposed approach. In the second example, a HW model
will be used.

5.1 A Wiener model

A pH neutralization system modelled as a Wiener process
from Gomez and Baeyens (2004) is adopted as a simulation
test. The linear plant is

B(q−1)

A(q−1)
=

0.0049− 0.0094q−1 + 0.0045q−2

1− 2.9160q−1 + 2.8339q−2 − 0.9179q−3
(23)

with time delay b = 3 controlled using a PI feedback
controller

Gc =
0.1− 0.5q−1

1− q−1
(24)

This plant is subjected to an additive disturbance of

dt =
at

1− 0.8q−1
(25)

where at is a sequence of independent and identically
distributed Gaussian random variables with zero mean and
nominal variance σ2

a = 0.01. The static nonlinearity N2 is
plotted in the right-hand corner of Fig. 4.

Due to the intractable nature of the nonlinearity, a Monte
Carlo method is used to estimate the performance of
the proposed strategy to estimate the variance, σ2

y⋆ . One
thousand observations generated from the Wiener model
are passed to the NARMA identification using Matlab
function nlarx. Once the NARMAR model is identified,
the MVPLB and the performance index can be estimated
using the method described in Eqn. (20). This procedure
is repeated 500 times.

The estimates of the performance index using the linear
ARMA and proposed methods are shown in the compara-
tive box plot in Fig. 4. The true value of the performance
index for this example is η = 0.404.

5.2 A Hammerstein-Wiener model

In this section, a HW model with linear dynamics

q−bB(q−1)

A(q−1)
=

q−3(1− 0.5q−1)

1− 1.5q−1 + 0.7q−2
(26)
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Fig. 4. Comparative box plots of the quality estimates
of the performance index for a Wiener model. The
horizontal dotted line is the true value of 0.404.

under a feedback control with a PI controller,

Gc =
0.05− 0.02q−1

1− q−1
(27)

The first static nonlinearity,N1, is a coulombic and viscous
friction nonlinearity, vt = sgn(ut)(|ut|+ 0.07), where 0.07
is the offset, and the trailing nonlinearity, N2, is a third
order polynomial, yt = xt + 0.25x2t + 0.125x3t . Both N1

and N2 are inserted in Fig. 5. The same disturbance model
structure used in the Wiener example is adopted for this
simulation, the only difference being that the variance of
at, σ

2
a = 0.05. The estimates of the performance index

using the proposed method are plotted in Fig. 5.
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Fig. 5. Comparative box plots of the quality estimates of
the performance index for a HW model.

6. DISCUSSION

From the simulations for Wiener and HW models, we
observe that the estimates of the performance index from
the linear CPA techniques (using a linear ARMA model to
fit the process output) have the significant biases that for
our examples are 30–47% deviating from the true values.

Our proposed method reduces this bias down to the range
7–12%.

An obvious question regarding the application of our pro-
posed method is when is it necessary to apply nonlinear, as
opposed to the simpler linear, CPA strategies. The answer
is simple: one just needs to check the nonlinearity of the
output perhaps using the Hinich test proposed by Hinich
(1982) and discussed further in Tong (1990), Haber and
Keviczky (1999). In a related application, these tests have
been used for diagnosing the valve stiction in Choudhury
et al. (2004) and estimating MVPLB for the valve stiction
problem Yu et al. (2008, 2010).

7. CONCLUSIONS

The contribution of this work is to propose two per-
formance indices for the control loops following the
Hammerstein-Wiener (HW) model structure where the
additive disturbance enters the system before the second
static nonlinearity. The first performance index is based
on the prediction error from the naive prediction when
the minimum variance control with respect to xt is imple-
mented. A second index based on the variance decompo-
sition is also proposed in this paper. Since it is simpler to
calculate than the former performance index, it may be
used for the more complex nonlinear systems.

This algorithm requires only observable signals and crude
estimates of the plant dominant time constants and plant
delay. The proposed method does not require one to iden-
tify the process (linear dynamic and static nonlinearity)
and disturbance structure, but one does need to estimate
the closed-loop nonlinear model. The proposed method
works well even in the case of non-smooth nonlinearities.
Simulation results for a range of differentiable and non-
differentiable nonlinearities show that our approach can
provide reliable estimates for CPA on the HW nonlinear
systems in contrast to simply ignoring the nonlinearity.

For this study, we did not include measurement noise,
although it will be considered in the future. Another
possible direction based on this paper is to find out
the minimum variance controller with respective to the
outputs.
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