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Abstract: In this work a new systematic and generalized strategy to solve the MIMO plant-
wide control problem is proposed. The methodology called Minimum Square Deviation (MSD)
considers several points such as the optimal sensor location (OSL) based on the sum of square
deviation (SSD) and the control structure selection (CSS) based on net load evaluation (NLE)
problems simultaneously. Particularly, this work focuses on selecting the best MIMO control
structure by using a new steady-state index called NLE. Thus, alternative control structures
can be obtained through different interaction levels and defining a corresponding performance
improvement. Two well-known chemical process are proposed here for testing this methodology.
In addition, a robust stability analysis applying the classical µ-tool is performed by considering
both parametric and unmodeled dynamic uncertainties.
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1. INTRODUCTION

The processes synthesis stage defines the connection be-
tween units and their sizing. Normally, this problem is
solved by using steady-state (SS) information only without
considering issues such as optimal sensor location (OSL)
and control structure selection (CSS). It is crucial to
identify some potential control problems at this phase for
achieving a suitable plant design. However, only partial
solutions exist to quantify these kind of problems with SS
tools only. In this work a rigorous and generalized treat-
ment of theses aspects are proposed without accounting
any heuristic considerations.

Different approaches exist and basically can be grouped
into OSL and CSS areas, addressing the problem sepa-
rately. These individual and unrelated treatments usually
produce sub-optimal solutions from the plant-wide control
point of view. The OSL field generally uses investment
costs, observability, Kalman filter theory and dynamic
models to define the sensors network by means of integer
optimization routines (Musulin et al., 2005; Singh and
Hahn, 2005; Kadu et al., 2008; Bhushan et al., 2008). Gen-
erally, these strategies are developed on process in open
loop or with an already existing control policy. None of
them considers the benefit of solving the plant-wide control
structure together with the OSL problems. A similar situa-
tion occurs in plant-wide CSS topics. Mainly the problem
is solved by using process interaction measures without
considering which would be the best way for sensing the
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variables. Generally, a predefined sensors network is used
and the CSS problem dimension is reduced heuristically
through the application of the engineering judgment. Cur-
rently the standard tools to CSS in industrial processes
are still the relative gain array (RGA) proposed by Bristol
(1966) and its modifications to handle non-square process
(Chang and Yu, 1990), disturbances (Chang and Yu, 1994;
Lin et al., 2009) and dynamic implications (McAvoy et al.,
2003; He et al., 2009), among others.

In this work a new generalized and systematic strategy
called Minimum Square Deviation (MSD) for optimal
plant-wide control is presented for chemical process. Ba-
sically, the overall procedure can be divided in two se-
quential optimization problems. The OSL problem based
on sum of square deviation (SSD) accounting the control
effects and the net load effect (NLE) based CSS problem.
In this work, only the last topic is addressed exhaustively.
Detailed descriptions about the former topic can be found
in Zumoffen and Basualdo (2009), Zumoffen et al. (2009)
and Molina et al. (2009). Similarly, an optimal signal
selection for monitoring systems design can be found in Zu-
moffen and Basualdo (2010) where similar mixed-integer
optimization routines were proposed by using genetic al-
gorithms (GA). In this work a new index named the NLE
is proposed to decide among different control structures.
This index allows to obtain a trade-off solution between
servo and regulator behavior by accounting the control
objectives. This can be done through a proper adjustment
of the weight matrices. The overall problem results in a
combinatorial one and can be efficiently solved by GA.

The optimal control structures obtained via NLE improve
the overall dynamic behavior avoiding the explicit design
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of classical cascade/feedforward control approaches. In this
work the µ-tools are used only to analyze the feasibility of
the proposed control policies under plant-model uncertain-
ties (realistic scenario).

2. MSD PLAN-WIDE CONTROL STRATEGY

The systematic and generalized MSD strategy for perform-
ing plant-wide control proposed here can be observed at
Fig. 1. The blocks with dark grey background summarize
the procedures for solving the OSL problem. Initially,
during the step of SS process design can be optimized
(if it is required) accounting different objective functions,
closely related to the operation cost. The second step needs
to define which would be the minimum control loops such
that ensure the plant stability, i.e. inventory control. In
this stage, the remaining degrees of freedom (if any), are
used for defining the controlled variables (CV)/sensor loca-
tions. It is performed by applying GA, being the objective
function the sum of square deviation (SSD), specifically
developed according to the plant requirements (Zumoffen
and Basualdo, 2009; Zumoffen et al., 2009; Molina et al.,
2009).

Assuming that after the stabilization process the poten-
tial sensor locations are m and the available manipulated
variables are n with m > n, then m−n degrees of freedom
exist. For analyzing which would be the best configuration
is very useful adopting a full multivariable controller based
on the internal model control (IMC) theory. It can be
implemented as shown in Fig. 2. where, Gs(s) is a n × n
transfer function matrix (TFM) containing the controlled
variables (CV) of the process and Gr(s) is a (m− n)× n
TFM representing the uncontrolled variables (UV). Simi-
larly, Ds(s) and Dr(s) represent the disturbance models
for each part of the process with dimensions n×p and (m−
n) × p respectively. Gc(s) represents the IMC controller
designed based on the process model G̃s(s). The optimal
selection of Gs(s), i.e. OSL, can be made by considering
the SS (s=0) error in the UV when perfect control is
supposed and both set points and disturbances changes
are considered individually (Zumoffen and Basualdo, 2009;
Zumoffen et al., 2009; Molina et al., 2009). Thus, the
process outputs of UV can be represented as

yr = Sspysp
s + Sdd∗ (1)

with Ssp = GrG−1
s and Sd = Dr −GrG−1

s Ds. From (1)
can be observed that the SS error only depends on the
selected subprocess Gs. The SSD index can be stated as

SSD =
n∑

i=1

‖esp(i)‖22 +
p∑

j=1

‖ed(j)‖22

=
n∑

i=1

‖Λ2SspΛ1yn
sp(i)‖22 +

p∑
j=1

‖Θ2SdΘ1dp
∗(j)‖22

= trace
(
Λ2

1S
T
spΛ2

2Syr

)
+ trace

(
Θ2

1S
T
d Θ2

2Sd

)
(2)

where esp(i) and ed(j) are the vector of deviations corre-
sponding to the yr outputs from their nominal operating
point values when an unitary change happens in the i set
point and j disturbance respectively. The vectors yn

sp(i)
and dp

∗(i) have an unitary entry at the location i and zero
elsewhere. The diagonal weighing matrices Λ1, Λ2, Θ1 and

Figure 1. MSD Plant-Wide Control Strategy

Figure 2. Generalized IMC Structure

Θ2 allow to include the process control objectives such as
set point/disturbance magnitudes and the relative degree
of importance among the overall outputs. The minimiza-
tion of (2) respect to the sensor location is a combinatorial
problem that can be suitably solved by using GA.

2.1 Control Structure Selection

Assuming now that the problem stated previously was
solved efficiently, so Gs was selected. In this scenario the
problem to be solved is the input-output pairing, i.e. the
CSS. The blocks with light grey background in the Fig. 1
allow to address this problem in a systematic and gener-
alized way. This work is principally focussed on showing
how the NLE approach allows to obtain the optimal con-
trol structure. Note that the controller structure may be
diagonal (i.e decentralized/without interaction), full (i.e.
full interaction) or with other some specific structure (i.e.
partial interaction).

If dynamic information of the process is known (i.e.
simplified linear models), so the relative normalized gain
array (RNGA) is preferred as pairing tool instead of RGA.
The RNGA was recently proposed by He et al. (2009)
to improve the pairing selection in decentralized control
structures. This approach considers the time constant and
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delay for each plant model subprocess as a normalization
factor of the conventional RGA. If the pairing proposed
by RNGA is the same as that given by the RGA or
eventually there is no dynamic information available, the
RGA pairing tool must be selected. In this context, the
future control performance can be improved by optimal
CSS via NLE.

Considering again the Fig. 2 the CV of the process can be
expressed as

ys(s) = G̃s(s)Gc(s)ysp
s (s) +

(
I− G̃s(s)Gc(s)

)
ynet

s (s)
(3)

where
ynet

s (s) = A(s)ysp(s) + B(s)d∗(s) (4)

A(s) = C(s)
(
Gs(s)− G̃s(s)

)
Gc(s) (5)

B(s) = C(s)Ds(s) (6)

C(s) =
[
I +

(
Gs(s)− G̃s(s)

)
Gc(s)

]−1

(7)

being ynet
s (s) the net load effect on CV due to both set

point and disturbances changes. From (3) can be observed
that at SS the term (I−G̃s(s)Gc(s)) produces an integral
behavior rejecting potential offset for ys(s). This is true
by accounting the IMC structure design where Gc(s) =
G̃−1

s (s)F(s), and F(s) the low-pass matrix filter. However,
in the transient response ys(s) is influenced directly by the
evolution of ynet

s (s) and its SS gain. Analyzing this last
case (s=0), (5) and (6) can be reduce to

A = I− G̃sG−1
s (8)

B = G̃−1
s GsDs. (9)

Equation (8) shows that the full IMC structure case,
G̃s = Gs, allows to reject the set point effects completely
(A = 0), but the disturbance effects in (9) enter to the
process without modifications (B = Ds). From (9) can
be observed that a specific selection of G̃s may decrease
these effects. Anyway, a trade-off solution is necessary
to adopt between servo and regulator problem. Then,
parameterized the model selection as

G̃s(Γ) = Gs ⊗ Γ, with Γ =

 γ11 · · · γ1n

...
. . .

...
γn1 · · · γnn

 (10)

where ⊗ is the element by element product and the γij

can be 0, 1 indicating the selection (γij = 1) or not (i.e.
γij = 0) of the process element ij. Thus, a new index
called the net load effect (NLE) in a sum square sense is
proposed to decide between different control structures for
multivariable systems.
NLE(Γ) = trace

(
∆2

2A
T
Γ ∆2

1AΓ

)
+ trace

(
Ξ2

2B
T
Γ Ξ2

1BΓ

)
(11)

where AΓ and BΓ are the net load matrices from (8)
and (9) parameterized by the model selection proposed
in (10). The diagonal weighing matrices ∆1, ∆2, Ξ1 and
Ξ2 allow to include the process control objectives such as
set point/disturbance changes and the relative degree of
importance between the outputs. An optimal solution can
be obtained by the minimization of (11) by searching Γ in
the parameter space.

min
Γ
NLE(Γ), subject to det(G̃s(Γ)) 6= 0 (12)

Table 1. Reduced Shell Process

u1 u2 u3 d1 d2

y1
4.05e−27s

(50s+1)
1.77e−28s

(60s+1)
5.88e−27s

(50s+1
1.20e−27s

(45s+1)
1.44e−27s

(40s+1)

y2
5.39e−18s

(50s+1)
5.72e−14s

(60s+1)
6.90e−15s

(40s+1)
1.52e−15s

(25s+1)
1.83e−15s

(20s+1)

y3
4.38e−20s

(33s+1)
4.42e−22s

(44s+1)
7.20

(19s+1)
1.14

(27s+1)
1.26

(32s+1)

Table 2. Weighing Matrices for Shell Process

∆1 ∆2 Ξ1 Ξ2

Γ1 diag(0,0,0.5) diag(1,1,1) diag(0.5,0.5) diag(1,1,1)
Γ2 diag(0,0,0.5) diag(0,0,0.1) diag(0.5,0.5) diag(1,1,1)

Note that the exhaustive search of all possible combination
of Γ, in (12), is possible in cases where only a few number
of variables are accounted. The combinatorial size of the
problem results 2(n×n), which grows quickly with the
number of varaibles. For large scale process is necessary
some mixed-integer optimization algorithm that allows to
solve the combinatorial problem in (12). In this work GA
has been applied.

3. STUDIED CASES

The proposed methodology, MSD, especially the CSS by
NLE is presented in the following. The OSL part of the
systematic strategy in Fig. 1 is not applied here due to
space limitations. However, several works summarize the
results of this proposal (Zumoffen and Basualdo, 2009;
Zumoffen et al., 2009; Molina et al., 2009). In this case
two examples are proposed.

3.1 Example No1: The Shell Oil Fractionator

Basically, the process is a distillation column (Maciejowski,
2002). The overall plant has 7 potential variables to mea-
sure, 3 possible manipulated variables, and 2 disturbances.
The control objectives propose to keep as lowest as possible
the variability in 3 variables (i.e. this is economically
advantageous). This requirements left the control problem
without degrees of freedom. Thus, the CSS by NLE can be
stated by using both Gs(s) and Ds(s) presented at Table 1
with dimensions of 3× 3 and 3× 2 respectively. Note that
the time constant and the delays are expressed in minutes.

The RGA and RNGA analysis drives to the same pairing
structure and suggests a decentralized control strategy,
u1 − y1, u2 − y2, and u3 − y3. Therefore, a NLE analysis
is necessary to define the best control structure under this
conditions. Considering in Γ the decentralized loops fixed,
this parametrization allows to decide on the off-diagonal
elements. The size of the combinatorial problem becomes
2(3×3−3) = 64, and this problem can be solved efficiently
by exhaustive search as well as GA. Solving the problem
stated in (12) with the parameters setting shown at Table
2 the following solution were found

Γ1 =

[ 1 1 1
1 1 1
1 1 1

]
Γ2 =

[ 1 1 1
0 1 0
0 0 1

]
(13)

Where Γ1 suggests a full multivariable controller taking
into account the original control objectives. On the other
hand, Γ2 proposes a generalized control structure by

Copyright held by the International Federation of Automatic Control 445



(a) Top Product Composition

(b) Side Product Composition

(c) Bottom Reflux Temperature

Figure 3. Shell Responses with Different Control Struc-
tures

Table 3. Total IAE for Shell Process

Decentralized Γ1 Γ2

IAEt 337.6 126.2 220.2

coupling only some loops (i.e. two loops off-diagonal).
The last structure has been obtained by relaxing the
requirements on set point changes.

Figure 3 displays the outputs of the Shell process when
different control structures are used, decentralized (not
interacting), Γ1 (fully interacting), and Γ2 (partially in-
teracting). The last two structures were obtained by NLE
index optimization. In addition, the integral absolute error
(IAE) is shown for each output, in the legend, as well
as the corresponding control structure. In these figures
a set point change of -0.5 occurs for y3 at t = 0 min.
and sequentially two step disturbance effects at t = 1000

min. and t = 2000 min. for d1 and d2 respectively with
magnitud of 0.5. Clearly, the best control structure is the
full IMC case, as can be observed at Table 3 considering
the individual IAEs sum, IAEt =

∑
i IAEi. However, note

that the partially interacting case, Γ2, presents similar IAE
values with only two additional loops (equation 13). All the
controllers were designed using the IMC theory and first
order models without delay information.

3.2 Example No2: The CL Column

In this case two heat-integrated distillation columns de-
veloped by Chiang and Luyben (1988) are analyzed. Here
the methanol-water separation with low product purities
(96/4) is proposed. The feed-split configuration was used
giving a 4× 4 MIMO process model with one disturbance
signal that can be observed at Table 4. The control ob-
jectives are to maintain the four compositions, y1 to y4,
(overhead and bottom for each column) at their desired
values. The manipulated variables are u1: reflux ratio in
the high pressure column, u2: heat input, u3: reflux ratio
in the low pressure column, and u4: the feed split. The
unmeasured disturbance signal is the feed composition, d1.

In this case again the process objectives left the control
problem without degrees of freedom. Thus, the CSS by
NLE can be stated by using both Gs(s) and Ds(s)
presented at Table 4 with dimensions of 4 × 4 and 4 × 1
respectively. Note that the time constant and the delays
are expressed in minutes.

The RGA and RNGA analysis generates the same pairing
information and suggests the following ones: u1− y1, u2−
y2, u3 − y3 and u4 − y4. Therefore, a NLE analysis is
necessary to define the best control structure under these
conditions. Considering Γ parameterized as in the previous
example, the size of the combinatorial problem becomes
2(4×4−4) = 4096, and this problem can be solved efficiently
by exhaustive search as well as GA. Solving the problem
stated in (12) with the parameters setting shown at Table
5 the solutions Γ1 and Γ2 were found. These are shown
in (14) and are compared with the solution obtained by
Chang and Yu (1994) opportunely recognized as ΓCY .

Γ1 =

 1 1 0 1
1 1 0 1
1 1 1 1
1 1 1 1

 Γ2 =

 1 1 0 0
1 1 0 0
1 1 1 0
0 0 0 1

 ΓCY =

 1 1 0 0
1 1 0 0
1 1 1 0
1 1 1 1


(14)

The model selection given by Γ2 proposes a generalized
control structure by coupling only some loops (i.e. four
off-diagonal loops). This solution considers the original
control objectives (i.e. equally weighted). On the other
hand, Γ1, suggests a full multivariable controller and its
structure has been obtained by relaxing the requirements
on disturbance. The model selection suggested by Chang
and Yu (1994), ΓCY , is an almost triangular structure
obtained via generalized relative disturbance gain.

Figure 4 displays the outputs of the CL process when dif-
ferent control structures are used, decentralized (not inter-
acting), Γ1 (fully interacting), Γ2 (partially interacting),
and the proposed by Chang and Yu (1994), ΓCY (almost
triangular interacting). Both Γ1 and Γ2 were obtained by
NLE index via GA optimization. The Fig. 4 also shows the
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Table 4. CL Process

u1 u2 u3 u4 d1

y1
4.45

(14s+1)(4s+1)
−7.4

(16s+1)(4s+1)
0 0.35

(25.7s+1)(2s+1)
1.02

(25s+1)(2s+1)2
e−4.5s

y2
17.3

(17s+1)(0.5s+1)
e−0.9s −41

(21s+1)(s+1)
0 9.2

(20s+1)
19.7

(25s+1)(s+1)
e−0.3s

y3
0.22

(17.5s+1)(4s+1)
e−1.2s −4.66

(13s+1)(4s+1)
3.6

(13s+1)(4s+1)
0.042(78.7s+1)

(21s+1)(11.6s+1)(3s+1)
0.75

(15.6s+1)(2s+1)2
e−5s

y4
1.82

(21s+1)(s+1)
e−s −34.5

(20s+1)(s+1)
12.2

(18.5s+1)(s+1)
e−0.9s −6.92

(20s+1)
e−0.6 16.1

(25s+1)(2s+1)
e−0.6s

(a) Top Composition High Pressure Column (b) Bottom Composition High Pressure Column

(c) Top Composition Low Pressure Column (d) Bottom Composition Low Pressure Column

Figure 4. CL Responses - Different Control Structures

Table 5. Weighing Matrices for CL Column

∆1 ∆2 Ξ1 Ξ2

Γ1 diag(1,1,1,1)·0.5 diag(1,1,1,1) 0.05 diag(1,1,1,1)·0.1
Γ2 diag(1,1,1,1)·0.5 diag(1,1,1,1) 0.05 diag(1,1,1,1)

Table 6. Total IAE for CL Process

Decentralized Γ1 Γ2 ΓCY

IAEt 12.22 10.47 7.72 10.07

IAE values for each output, indicated at the legend, as well
as the corresponding control structure. In this simulation
case a set point change is proposed for the low pressure
column at t = 0 min. which magnitude is about −0.01 mol
fraction and 0.01 mol fraction for the overhead and bottom
compositions respectively. Sequentially a disturbance ap-
pears at t = 100 min. which magnitude is 0.05 mol fraction
in the feed composition. Clearly, the best control structure
is the proposed here, Γ2, as can be observed at Table 6
considering the individual IAEs sum. All the controllers
were designed using the IMC theory and first order models
without delay information.

4. ROBUST STABILITY AND PERFORMANCE

The robust stability and performance evaluation when
different controller structures are used in MIMO systems

is a very difficult task. The structured singular value
(SSV) or µ-analysis (Skogestad and Postlethwaite, 2005)
is a popular methodology to evaluate these characteristics
when model uncertainties are present. The SSV generalizes
the singular value decomposition (SVD) by considering the
uncertainty structure.

Considering that Ps(s) = [Gs(s),Ds(s)] is the nominal
process model, then the linear fractional transformation
(LFT) (Skogestad and Postlethwaite, 2005) concept can
be used to represent this nominal model in a generalized
version, P∗

s(s) as is shown at Fig. 5. The robust stability
of the relation ep = F(∆)[d∗,ysp

s ]T can be analyzed by
the following determinant condition

det (I−M∆(jω)) 6= 0, ∀ω,∀∆, σ (∆(jω)) ≤ 1,∀ω
(15)

where M is the transfer function matrix from w to z, resul-
tant of close the lower loop with the controller K in the Fig.
5 and opening the upper one. ep represents the tracking
error in each controlled variable, ∆ = diag(∆1, . . . ,∆i)
is a block diagonal matrix of stable normalized perturba-
tions, where each ∆i may represent a specific source of
uncertainty (i.e. parametric or unmodelled dynamics) and
fulfilling σ(∆(jω)) ≤ 1 ,∀ω. Where, σ is the maximum
singular value and jω the complex frequency. A way to
generalize (15) is the application of µ concepts (Skogestad
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Figure 5. Generalized Process With Uncertainties

(a) Shell Process

(b) CL Process

Figure 6. µ-Analysis - Robust Stability

and Postlethwaite, 2005). The robust performance can be
analyzed by applying similar ideas. In this work, the µ-
analysis toolbox for Matlabr environment is used.

Here both parametric and unmodelled dynamics uncer-
tainties were proposed for delays and gains of the pro-
cess respectively. A 20% of uncertainty was selected for
the dead time and a complex perturbation for the gains
varying between 10% at steady-state to 200% at high
frequency.

Figure 6 summarizes the uncertainty process analysis
with different control structures. In the Shell case, Fig.
6(a), Γ1 does not guarantee the robust stability (µ ≥
1). On the other hand, Γ2 presents the best behavior
under these kind of uncertainties (i.e. the lower µ peak).
Similarly, Fig. 6(b), displays the uncertainty CL process
with different control structures. Decentralized control
policy does not guarantee the robust stability under these
conditions (µ ≥ 1). Structures Γ1 (fully interacting)
and Γ2 (partially interacting) present the best behavior.
The structure proposed by Chang and Yu (1994) is not

adequate because it is located very near to the stability
limit (i.e. a SS uncertainty bigger than %10 produces
instability).

5. CONCLUSION

In this work several results that show how a suitable and
generalized control structure selection (CSS) can improve
both the overall performance and robust stability were
presented. Classical control policies (decentralized and
full) are not always the best solution. It is remarkable
that the use of a new steady-state index, named the net
load effect (NLE), proposed here represents a key element
for driving the search to the most suitable MIMO control
structure. In addition, it was observed how the control
objectives can be included easily allowing an adequate
trade-off solution between them.
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