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Abstract: This paper presents the result of applying POD (Proper Orthogonal Decomposition)
and IHMPC (Infinite Horizon Model Predictive Control) to the control of a non-isothermal
tubular reactor. This paper is based on a previous work of O.M. Agudelo, J.J. Espinosa, B.
De Moor Control of a Tubular Chemical Reactor by means of POD and Predictive Control
Techniques, in Proceedings of the European Control Conference 2007 (ECC 2007), pp. 1046-
1053, Kos, Greece, 2007 ,where a finite horizon model predictive control and POD techniques
are applied a non-isothermal tubular reactor. In this paper the control objective is to keep the
operation of the reactor at a desired operating condition in spite of the disturbances in the feed
flow.POD and Galerkins method are used to derive the low order linear model that capturesthe
dominant dynamics of the PDEs, which are subsequently used for controller design. Two IHMPC
formulations are constructed on the basis of the low order linear model and are demonstrated,
through simulation, to achieve the control objectives.

Keywords: Infinite Horizont Model Predictive Control (IHMPC),Proper Orthogonal
Decomposition (POD),Non-Isothermal Tubular Reactor.

1. INTRODUCTION

The dynamics of tubular reactors are typically described
by nonlinear PDEs (Partial Differential Equations) which
are derived from mass and energy balance principles. The
control of such systems can be addressed by transforming
the PDEs and the boundary conditions into a set of ODEs
(Ordinary Differential Equations), which would make pos-
sible the application of the control theory developed for
lumped parameter systems. However, the design of the
controllers would be very difficult or practically impossible
due to the high order models obtained by approximating
the PDEs.

Proper orthogonal decomposition (POD) is a power-
ful method for data analysis aimed at obtaining low-
dimensional approximate descriptions of a high-dimensional
process. The POD provides a basis for the modal decom-
position of an ensemble of functions, such as data obtained
in the course of experiments or numerical simulations.
The most striking feature of the POD is its optimality:
it provides the most eficient way of capturing the domi-
nant components of an infinite-dimensional process with
only a finite number of modes, and often surprisingly
few modes.In general POD is a methodology that first
identifies the most energetic modes in a time-dependent
system, and subsequently provides a means of obtaining
a low-dimensional description of the system’s dynamics
where the low-dimensional system is obtained directly
from the Galerkin projection of the governing equations
on the empirical basis set (the POD modes).

This paper presents the result of applying POD and
IHMPC to the control of a non-isothermal tubular re-

actor. The control goal is to keep the operation of the
reactor at a desired operating condition in spite of the
disturbances in the feeding flow.Two IHMPC formulations
are constructed on the basis of the low order linear model
and are demonstrated, through simulation, to achieve the
control objectives.

This paper is organized as follows: Section II presents a
description of the process and the optimization algorithm
for obtaining the optimal operating profile. Section III
shows the derivation of the reduced order model by means
of POD. In Section IV we show theory and design of two
extended IHMPC.

2. NON-ISOTHERMAL TUBULAR REACTOR

The system to be controlled is a non-isothermal tubular
reactor where a single, first order, irreversible, exothermic
reaction takes place (A→B). The reactor is surrounded
by 3 cooling/heating jackets as it is shown in Figure 1.
The temperatures of the jackets fluids (Tj1 ,Tj2 and Tj3)
can be manipulated independently in order to control
the concentration and temperature profiles in the reactor.
It is assumed that the reacting mixture flows as a plug
through the reactor body in the axial direction. In this
dynamics only three phenomena are taken into account,
namely, convection , reaction and heat transfer (between
the reactor and its jackets). In this study we are not
considering the diffusion/dispersion phenomena and we
are neglecting the effects of the reactor wall. Under the
previous assumptions, the mathematical model of the
tubular chemical reactor consists of the following coupled
nonlinear PDEs:
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Fig. 1. Tubular Chemical Reactor with 3 cooling/heating jackets.
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with the following boundary conditions:

C = Cin at z = 0 and T = Tin at z = 0.

Here C(z, t) is the reactant concentration in [mol/l],
T (z, t) is the reactant temperature in [K] and Tw(z, t) is
the reactor wall temperature in [K] defined as follows (see
Figure 1),

Tw =

{

Tj1, 0 ≤ z < Za

Tj2, Za ≤ z < Zb

Tj3, Zb ≤ z < L
(2)

The parameters are presented in table 1.

Table 1. Values of the reactor parameters

Parameter value

v 0.1 m · s−1

L 1 m

k0 106 s−1

E 11250 cal · mol−1

R 1.986 cal · mol−1
· K−1

Cin 0.02 mol · l−1

Tin 340 K

Gr 4.25 · 109l K · mol−1
· s−1

Hr 0.2 s−1

The temperature of the jacket sections Tj1 ,Tj2 and Tj3

must be between 280 K and 400 K (input constraints),
in addition, the temperature inside the reactor must be
smaller than 400 K (state constraint) in order to avoid the
formation of side products.The kind of disturbances that
affect the reactor are the variations in the temperature
and concentration of the feed flow. In this system, only
the temperature of the feed flow is measured directly.
In addition, the reactor has a temperature sensor at
the output and 4 temperature sensors (s1,s2,s3 and s4)
distributed in its interior as it is shown in figure 1.

2.1 Operating point

The desired operating profiles (steady-state concentration
and temperature profiles) of the reactor are derived by
means of an optimization algorithm, which minimizes a
cost function subject to the steady-state equations of

the reactor described by (1), and the input and state
constraints defined previously. The steady-state model of
the reactor is given by the following Ordinary Differential
Equations (ODEs):

dC
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= −
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v
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v
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(3)

with T = Tin at z = 0 and C = Cin at z = 0, and
the discrete version of (3) can be found by replacing the
spatial derivatives by forward difference approximations as
follows:

Ci+1 = Ci −
k0∆z

v
Cie

−
E

RTf T i
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for i = 1, 2, ..., N = 300

(4)

where Ci = Ci/Cf and T i = Ti/Tf are the normal-
ized concentration and temperature of the ith increment,
Tw,i = Tw,i/Tf is the normalized temperature of the
reactor wall of the ith increment, N is the number of
increments in which the reactor is divided, Tf and Cf are
normalization factors, and ∆z is the length of the space
increment. The variables are normalized in order to avoid
possible numerical problems. The minimization problem
that is solved by the optimization algorithm is defined as
[1] :

min
T j1,T j2,T j3

ω(Cr − CN )2 + (1 − ω)
1

N

N
∑

i=1

(T r,i − T i)
2 (5)

subject to

steady state model given by (4)

Tjmin

Tf

≤ T j1, T j2, T j3 ≤
Tjmax

Tf

T i ≤
Tmax

Tf

, for i = 1, 2, ...., N = 300

(6)

where Cr is the desired concentration (normalized) at
the reactor output, T r,i is the desired temperature (nor-

malized) inside the reactor of the ith increment, CN is
the concentration (normalized) at the reactor output, ω
is a trade-off coefficient, Tjmin and Tjmax are the lower
and upper temperature values of the fluids in the jackets,
and Tmax is the maximum allowed temperature inside the
tubular reactor. In this problem Cr was set to 0, T r,i

was selected equal to the normalized temperature of the
feeding flow ( T in = Tin/Tf ) for i = 1, 2, ..., N . The trade-
off parameter ω can take values from 0 to 1. To solve the
optimization problem described by (5) a sort of Sequential
Quadratic Programming was proposed by [1].

Copyright held by the International Federation of Automatic Control 432



0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

Length z[m]

C
o

n
c
e

n
tr

a
ti
o

n
 [

m
o

l/
l]

0 0.2 0.4 0.6 0.8 1
340

350

360

370

380

390

Length z[m]
T

e
m

p
e

ra
tu

re
 [

K
]

Fig. 2. Steady-state concentration and temperature profiles (Oper-
ating Profiles) whit TJ1 = 374.6K, TJ2 = 310.1K and TJ3 =
325.2K.

The algorithm was executed using different initial con-
ditions. Along the experiments, three local minima were
found. The selection of the optimal temperature and con-
centration profiles was done by checking the value of the
cost function and the deviation of the temperature at the
reactor output with respect to the temperature of the feed
flow.

From the three local minima it was adopted the operating
point TJ1 = 374.6 K, TJ2 = 310.1 K and TJ3 = 325.2 K,
since it has the smallest cost function value and a small
temperature deviation at the reactor output. The optimal
concentration and temperature profiles can be observed in
Figure 2.

2.2 Linear Model

The linear model of the tubular chemical reactor is ob-
tained by linearizing (1) around the jacket’s temperatures
and the operating profiles presented in Figure 2. This
linear model is given by,
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for i = 1, 2, ..., N
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where αA,i = αA(zi),αB,i = αB(zi),αC,i = αC(zi),αD,i =
αD(zi) zi = i∆z, Ci , Ti , Tw,i are the concentra-
tion, temperature and reactor wall temperature of the ith
increment,C∗

i ,T ∗

i ,T ∗

w,i are the steady state concentration,
temperature and reactor wall temperature corresponding
to zi ,C∗

in and T ∗

in are the the steady state concentration

and temperature of the feed flow, C
∆

i = (Ci − C∗

i )/Cf

,T
∆

i = (Ti − T ∗

i )/Tf , T
∆

w,i = (Tw,i − T ∗

w,i)/Tf are the nor-
malized deviations from steady state of the concentration,
temperature and reactor wall temperature of the space

increment, C
∆

in = (Cin − C∗

in)/Cf , T
∆

in = (Tin − T ∗

in)/Tf

are the normalized deviations from steady state of the
concentration and temperature of the feed flow, N is the
number of space increments in which the reactor is divided,
and ∆z is the length of each increment.

The linear system (7) can be written as follows:

ẋ(t) = Ax(t) + Bu(t) + Fd(t) (9)

Where A,B and F are the matrices describing the system,
x(t) is the state vector,u(t) is the vector of the inputs and
d(t) is the vector of the disturbances.

Since the spatial domain of the reactor is divided into
N = 300 sections, the number of states of (9) is equal
to 600. Given that such large number of states makes the
design and implementation of feedback controllers for the
reactor difficult, in the next section a reduced order model
will be derived using POD and Galerkin projection.

3. MODEL REDUCTION USING POD

Let x(t) ∈ ℜ2N = [x1(t), x2(t), ..., x2N ]T be the state
vector of a given dynamical system, and let X ∈ ℜ2N×Nd

with Nd ≥ 2N be the so-called snapshot matrix that
contain a finite number of samples or snapshots of the
evolution of x(t) at t = t1, t2, ..., tNd

. In POD, we start
by observing that each snapshot can be written as a linear
combination of a set of ordered orthonormal basis vectors
(POD basis vectors) ϕj ∈ ℜN ,∀j = 1, 2, ..., N :

x(ti) =
2N
∑

j=1

aj(ti)ϕj ,∀i = 1, 2, ..., Nd (10)

where aj(ti) is the coordinate of x(ti) with respect to the
basis vector ϕj (it is also called time-varying coefficient
or POD coefficient). Since the first n most relevant basis
vectors capture most of the energy in the data collected, we
can construct an nth order approximation of the snapshots
by means of the following truncated sequence

x(ti) =

n
∑

j=1

aj(ti)ϕj ,∀i = 1, 2, ..., Nd, n ≪ 2N (11)

This is the essence of model reduction by POD.

The POD basis Functions are determined from simulation
or experimental data (Snapshot matrix) of the process.
The dynamic model for the first n time varying coefficients
can be found by means of the Galerkin projection [4].

The derivation of a reduced order model of (9) was done
in 5 steps. These steps are described in the following
subsections.

A. Generation of the Snapshot Matrix. We have
created a snapshot matrix Xsnap ∈ ℜ600×1500 from
the system response where independent step changes
were made in the input u(t) and perturbation d(t)
signals of the nonlinear model (1)
Xsnap = [x(t = ∆t), x(t = 2∆t), ..., x(t = 1500∆t)]

B. Derivation of the POD basis vectors. The POD
basis vectors are obtained by computing the SVD of
the snapshot matrix Xsnap,

Xsnap = ΦΣΨT
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where Φ ∈ ℜ600×600 and Ψ ∈ ℜ1500×1500 are unitary
matrices, and Σ ∈ ℜ600×1500 is a matrix that contains
the singular values of Xsnap in a decreasing order on
its main diagonal. The left singular vectors, i.e. the
columns of Φ are the POD basis vectors.

C. Selection of the most relevant POD basis vec-
tors.It was done by checking the singular values of
Xsnap. The larger the singular value the more relevant
the basis function is. The first 20 basis functions
associated to the first 20 largest singular values were
selected. The 20th order approximation of x(t) is
given by

x(ti) =
20
∑

j=1

aj(ti)ϕj = Φna(t) (12)

D. Construction of the model for the first n=20
POD coefficients. The Galerkin projection is the
most common way of deriving the dynamical model
for the POD coefficients, and it will be the method
used in this paper. Let us define a residual function
R(x) for equation (9) as follows:

R(x) = ẋ(t) − Ax(t) − Bu(t) − Fd(t), (13)

and we replace x(t) by its nth order approximation
xn(t) = Φna(t) in equation (13), the Galerkin projec-
tion states that the projection of R(xn) on the space
spanned by the basis functions Φn vanishes. That is,

〈R(xn), ϕj(zd)〉 = 0; j = 1, ...n (14)

Replacing x(t) by its nth order approximation xn(t) =
Φna(t) in equation (9), and applying the inner prod-
uct criterion (Galerkin projection) to the resulting
equation we have:

ȧ(t) = ΦT
nAΦna(t) + ΦT

nBu(t) + ΦT
nFd(t)

xn(t) = Φna(t)
(15)

and we obtain the model for the first n POD coeffi-
cients.

E. Validation of the reduced order model. For vali-
dating the reduced order model of the reactor, we ap-

plied constant input signals T
∆

J1(t) = 0.125 (T∆
J1(t) =

10 K), T
∆

J2(t) = 0.25 (T∆
J2(t) = 20K) and T

∆

J2(t) =
0.25 (T∆

J2(t) = 20K) and constant perturbation

signals C
∆

in(t) = 0.05 (C∆
in(t) = 10−3mole/l) and

T
∆

in(t) = 0.0625 (T∆
in(t) = 5K) to both the full order

model (1) and the reduced order model (15), and af-
terwards we compared their responses. Figure 3 show
the temperature and concentration deviation profiles
of the reactor at different time instants for each
model. From the previous results we can conclude
that the reduced order model with only 20 states
provides an acceptable approximation of the full order
model (600 states). The discrete-time version of (15)
that is used for designing the digital controller, was
obtained using the discretization method known as
zero-order hold (ZOH) with a sampling time of 0.2s,

a(k + 1) = Ãa(k) + B̃u(k) + F̃d(k)

xn(k) = Φna(k)
(16)
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Fig. 3. Temperature and concentration deviation profiles at t = 8s

and t = 15s. Solid line - full order Model. Dashed line - reduced
order model.

where Ã, B̃ and F̃ are the matrices describing the
new system. A modeling approach frequently adopted
in model predictive controller (MPC) considers a
discrete-time state-space model in the incremental
form (see [2]), hence model(16) can be represented
in the following form:
[

xs(k + 1)
xd(k + 1)

]

=

[

Iny 0
0 P

] [

xs(k)
xd(k)

]

+

[

Ds

Dd

]

∆u(k)

+

[

F s

F d

]

∆d(k)

(17)

y(k) =
[

Cs Cd
]

[

xs(k)
xd(k)

]

(18)

where xd(k) = V1a(k), xs(k) = V2a(k − 1), ∆uk =
uk − uk−1 is the input increment ∆dk = dk −
dk−1 is the disturbances increment and V1, V2 are
transformation matrices. In the state equation defined
in (17), the state component xs corresponds to the
integrating poles produced by the incremental form
of the model, and xd(k) = a(k) corresponds to
the system modes. For stable systems, it is easy to
show that when the system approaches steady state,
component xd tends to zero. P is a diagonal matrix
with components corresponding to the poles of the
system

4. EXTENDED INFINITE HORIZON MODEL
PREDICTIVE CONTROL

MPC is usually based on a discrete state-space model as
shown in Eqs. (17) and (18). The IHMPC cost can be
defined as follows:

Jk,∞ =
∞
∑

j=1

(ek+j − δk)
T

Q (ek+j − δk)

+
m−1
∑

j=1

∆uT
k+jR∆uk+j + δT

k Sδk

(19)

Where ek+j = y(k + j) − ysp, y(k + j) is the output pre-
diction at time instant k + j made at time k, ysp is the
desired output reference, δk ∈ ℜny is a vector of slack
variables, m is the control horizon, Q ∈ ℜny×ny , R ∈
ℜnu×nu and S ∈ ℜny×ny are positive definite weighting
matrices. Observe that each slack variable refers to a given
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controlled output. Weight matrix S should be selected
such that the controller pushes to zero the slacks or at
least minimize them depending on the number of inputs,
which are not constrained. Most of the infinite horizon
controller reduce to finite horizon controller by defining a
terminal state penalty Q. For the cost defined in (19) such
a terminal penalty is computed by the following Lyapunov
equation

Q − PT QP = PT CdT
QCdP (20)

Since an infinite horizon is used and the model defined in
(17) and (18) has integrating modes, terminal constraints
must be added to prevent the cost from becoming un-
bounded. Hence constraints can be written as follows:

C
s
xs(k) − ysp + C

s
D̃s∆uk − δk = 0 (21)

Where

D̃s = [ Ds...Ds ]

C
s

= diag [Cs...Cs]
(22)

Finally, the control optimization problem of the extended
infinite horizon MPC can be formulated as:

min
∆uk,δk

Jk,∞ =
m

∑

j=1

(ek+j − δk)
T

Q (ek+j − δk)+

xd
k+j

T
Qxd

k+j +
m−1
∑

j=1

∆uT
k+jR∆uk+j + δT

k Sδk

(23)

subject to (17), (18), (21) and

−∆umax ≤ ∆uk+j ≤ ∆umax

∆uk+j = 0 ; j ≥ m

umin ≤ uk−1 +

j
∑

i=0

∆uk+i ≤ umax; j = 0, 1, ...,m − 1

(24)

The control objective is to reject the disturbances that
affect the reactor, that is the changes in the temperature
and concentration of the feed flow. In addition, the control
actions must satisfy the input constraints of the process
(280K ≤ TJ1(t), TJ2(t), TJ3(t) ≤ 400K), and the control
system should keep the temperature inside the reactor
below 400K.

4.1 (IHMPC-POD)-Formulation in terms of the POD
coefficients

In this scheme, the control of the temperature and con-
centration profiles is achieved indirectly by controlling the
POD coefficients. The references of these POD coefficients
can be calculated by

aref = ΦT
nxref

where xref is the reference of the vector x(t) and is equal
to 0 since the control system has to keep the reactor
operating around the profiles shown in Figure 2. The
IHMPC controller, which uses model (17) to predict the
future behavior of the reactor, is formulated as (23) and
(24), where Cd = I20×20V1, C

s = 020×20V2. Observe that
the temperature constraint T (z, t) ≤ 400K of the reactor
has not been included in this IHMPC formulation.

Since the state vector a(k) is unknown and the changes
in the concentration of the feed flow (d1(k) = C∆

in(k)) are
not measured directly, they are estimated by means of an
observer (in this case a Kalman filter) with the following
formulation:

[

â(k + 1)

d̂1(k + 1)

]

=

[

Ã F̃C

0 1

] [

â(k)

d̂1(k)

]

+

[

B̃
0

]

u(k)

+

[

F̃T

0

]

d2(k) +

[

La

Ld

]

(y(k) − ŷ(k))

y(k) = Cselx̂n(k) = CselΦnâ(k)

(25)

where â is the estimated vector of the POD coefficients,

d̂1(k) is the estimation C
∆

in, d2(k) is the normalized tem-

perature deviation of the feed flow T
∆

in(k), y(k) ∈ ℜ4 is
a vector which contains the four temperature measure-
ments (normalized deviations) along the reactor, ŷ(k) is
the estimate of y(k), La and Ld are the submatrices of the
observer gain (Kalman gain), FC and FT are the column

vectors of F̃ = [F̃C , F̃T ] and Csel is a selection matrix
which selects the measured temperatures from the vector
xn(k).

The control horizon m was set to 10 samples umin and
umax were selected according to the input constraints
of the process and the operating temperatures of the
jackets, and the weighting matrices in this way: Q = 10 ·
I20×20, R = 1000 · I3×3, S = 1 · I20×20. The Kalman
gain matrix was computed from the following covariance
matrices: Rw = 1000 · I21×21,Rv = 10−6 · I4×4.

4.2 (IHMPC-PV)-Formulation in terms of physical variables

Unlike the previous control system, in this scheme the
formulation of the MPC controller is in terms of physical
variables. These variables are the temperature of some
selected points along the reactor and the concentration
at the reactor outlet. In this IHMPC formulation, the
temperature constraint (T (z, t) ≤ 400K) of the system
is imposed in the selected points. The IHMPC controller,
which uses model (17) to predict the future behavior of
the reactor, is formulated as (23) and (24), where Cd =
CselC,T

ΦnV1, C
s = 0nl,20V2, the temperature constraint

T (z, t) ≤ 400K of the reactor has been included in this
IHMPC formulation, CselC,T

is a selection matrix which
selects the temperatures and concentration that will be
controlled and nl is the number of controlled variables.
For estimating the state vector (xs(k) and xd(k)) and the
changes in the concentration of the feed flow (d1(k) =

C
∆

in(k)), this control scheme employs the same observer
used by the previous control system.

The parameters of the IHMPC controller were set as
follows: The control horizon m was set to 10 samples umin

and umax were selected according to the input constraints
of the process and the operating temperatures of the
jackets, and the weighting matrices in this way: Q = 15 ·
I20×20, R = 1000 · I3×3, S = 1 · I20×20. The references for

the variables were selected in this way: T
∆

p,ref = 0, and

C
∆

p,ref = 0.
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Fig. 4. Steady-state temperature and concentration profiles for Test.
Dashed line - Nominal profile (reference).Solid Line -IHMPC-
POD.

4.3 Simulation Results

In order to evaluate the performance of the control system,
the following test was carried out: The temperature of the
feed flow is increased 10K at the 10s and the concentration
of the feed flow is increased 10−3mole/L at the 5s. This
disturbances has a big impact on the temperature profile
of the reactor.

The simulation results of the test are presented in fig-
ures 4 for IHMPC-POD and Figures 5 for IHMPC-PV.
Furthermore, some quantities of interest are given in ta-
ble II. In this table, Tmax is the maximum temperature
reached inside the reactor during the test, ∆Cout% =
(CN − C∗

N )/C∗

N is the percentage of change of the con-
centration steady state at the reactor output with respect
to its nominal value (1.648 · 103mol/l) and CN is the
concentration at the reactor output steady state after the
test.

Table 2. Performance parameters of the control
systems

Quantities IHMPC-POD IHMPC-PV

Tmax [k] 389.1 387.4
∆Cout [%] -2.6092 -1.8811

5. CONCLUSIONS

In this paper we have presented the results of applying
POD and infinite horizon model predictive control tech-
niques to the control of the temperature and concentration
profiles of a non-isothermal tubular reactor.Thanks to
the POD and Galerkin projection techniques, the high-
dimensionality of the linearized model of the reactor has
been significantly reduced making possible the control de-
sign. Two POD-based IHMPC control schemes have been
proposed: a scheme where the formulation of the predictive
controller is in terms of the POD coefficients (MPC-POD)
and a scheme where the IHMPC is formulated in terms of
physical variables (IHMPC-PV). The second IHMPC con-
troller had better behavior for rejecting the disturbances
and in addition the tuning was more intuitive.Due to the
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Fig. 5. Steady-state temperature and concentration profiles for Test.
Dashed line - Nominal profile (reference).Solid Line -IHMPC-
PV.
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Fig. 6. Concentrations at the reactor output-IHMPC-POD and
IHMPC-PV.

flexibility that this scheme provides, we gave more impor-
tance to the reduction of the concentration at the reactor
outlet than to the reduction of the temperature deviations.
In spite of the spatial discretization of the nonlinear PDEs
that model the reactor, the linearization and the dramatic
reduction order by means of POD, on which the controller
is based, the controller performed well.
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