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Abstract: Microreactors consist of tens to hundreds of micrometer-scale channels.  The residence time of 
a fluid can be set exactly and backmixing can be minimized.  Particularly, very short residence time can 
be achieved.  In addition, it is possible to precisely control the reaction temperature due to large surface 
to volume ratio of channels.  These features of microreactors make it possible to realize the production of 
specialty chemicals, which cannot be handled in conventional reactors.  The most recognized problem in 
microreactors is channel blockage.  The catalyst deterioration is also an inevitable problem for catalyst 
reactions in microreactors.  To realize stable long-term operation of microreactors, it is necessary to 
detect such problems as early as possible.  Since miniaturized sensors are expensive and their direct 
installation inside channels may disturb the flow, it is indispensable to develop a process monitoring 
system using a few indirect measurements.  In this research, a state and parameter estimation system for 
tubular microreactors (TMRs) is developed to detect process faults.   In the developed system, a process 
model is derived from the first-principle model of TMRs.  Particle Filter (PF) or Extended Kalman Filter 
(EKF) or Ensemble Kalman Filter (EnKF) is designed to obtain the unknown parameters such as catalyst 
efficiency from a single wall temperature sensor.  To achieve high estimation performance, the optimal 
sensor location is determined on the basis of the observability.  The numerical examples illustrate that the 
blockage and the catalyst deterioration of TMRs can be detected more rapidly and accurately by using PF, 
as compared with EnKF and EKF.   

Keywords: Microreactors, Process monitoring, State estimation, Parameter estimation, Particle filter  



1. INTRODUCTION 

The production of specialty chemicals such as cosmetics and 
medicines needs to be flexible toward market changes and be 
environmentally friendly.  However, conventional reactors 
often generate a lot of by-products because of inadequate 
control of mixing and temperature.  As an alternative, 
microreactors attract industrial attention and are suitable for 
the production of specialty chemicals (Miyake and Togashi, 
2006).  Microreactors (MRs) consist of tens to hundreds of 
micrometer-scale channels.  Their main characteristics are 
rapid mixing and accurate temperature control (Miyake and 
Togashi, 2006).  Therefore, microreactors can realize the 
production of specialty chemicals, which cannot be handled 
in conventional reactors, with a negligible amount of by-
products.  In addition, there is a difference between 
conventional reactors and microreactors in the ways of 
increasing the production capacity.  Although the scale-up 
approach is well known in conventional reactors, it is time-
consuming and has the possibility that the product quality is 
degenerated.  On the other hand, numbering-up approach is 
adopted in the case of microreactors.  Numbering-up 
approach involves the parallelization of microreactors and 
realizes smooth transition from laboratory scale to production 
scale without degeneration of the product quality.   

To apply microreactors to real production and realize stable 
long-term operation, it is necessary to monitor process faults 

such as blockage and catalyst deterioration, which are the 
critical problems in the operation of microreactors.  The 
blockage and the catalyst deterioration are detected through 
the flow meters and the concentration analyzers installed in 
microchannels, respectively.  However, the installation of 
such sensors disturbs the flow, and the existing miniaturized 
sensors are expensive.  Therefore, it is desirable to estimate 
the inner operation condition of MRs from a limited number 
of indirect measurements.  So far, there are few researches on 
fault detection and diagnosis of microreactors (Kano et al., 
2007).   

In this work, a physical model-based process monitoring 
system for tubular microreactors (TMRs) is developed to 
detect process faults.  The monitoring performance depends 
on the accuracy of state and parameter estimation, which is 
done by various filters.  Kalman filter is the optimal filter for 
linear systems subject to Gaussian distribution of the state.  
For nonlinear processes, extended Kalman filter (EKF) 
linearizes their nonlinear terms and applies Kalman filter.  
The estimated value of EKF tends to diverge when the 
system has strong nonlinearity.  Whereas, ensemble Kalman 
filter (EnKF) does not linearize the nonlinear terms and has 
been used in forecasting (Yumimoto, 2009).  Although the 
state distribution is not generally Gaussian for nonlinear 
processes, EKF and EnKF approximate the state distribution 
by Gaussian distribution.  Particle filter (PF) does not 
linearize the nonlinear terms and does not assume a fixed 
shape of the state distribution.  PF has been used in many 
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areas including signal and image processing and target 
recognition (Rawlings and Bakshi, 2006).  However, only a 
few papers report applications of PF in the chemical industry.  
From these view points, in this work, PF is used to detect the 
blockage and the catalyst deterioration of TMRs.  In addition, 
the monitoring performance is also influenced by the position 
of sensors.  In this work, a single sensor is used to measure 
wall temperature.  The problem of where to locate a 
temperature sensor along TMRs to estimate unknown 
parameters most accurately is investigated on the basis of the 
observability.   

2. PARTICLE FILTER 

Consider the following nonlinear state space model: 

  11   nnn wxfx  (1) 
 

  nnn vxhy   (2) 

where x and y are the state and the measurement, respectively.  
f and h are the nonlinear functions of x.  w and v represent 
system and measurement noise, respectively.  n is the discrete 
time.   

PF have attracted attention because of the recent 
improvement of computer performance. Unlike other 
nonlinear filters, PF does not assume a fixed shape of the 
probability densities of the states, but it approximates the 
probability densities via particles.  The position and weight of 
particle present the value and probability density of state, 
respectively.   

Figure 1 shows the schematic diagram of Monte Carlo Filter 
(MCF) which is a kind of PF.  The basic algorithm is as 
follows:  

1) Predicting the prior estimate xn|n-1 at time n based on 
Eq. (1), 

2) Evaluating each particle weight proportional to the 
likelihood (goodness of fit to the measurement yn of the prior 
estimate xn|n-1) of each particle, 

3) Resampling the particles proportional to the particle 
weight so that the particles with very small weight are 
removed.   

3. NUMERICAL EXAMPLE 

In this section, PF is used in a numerical example and is 
compared with EKF in terms of the estimation performance.   

3.1 Problem Setting 

Consider the following nonlinear state space model 
(Kitagawa and Takemura, 2008): 
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Fig. 1. Schematic diagram of MCF (Kitagawa and Takemura, 
2008). 
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Fig. 2. Estimation results of EKF and PF.   

Table 1.  MSE and CPU time for state estimation.  

 EKF PF 
MSE 109 51 

CPU time 3.60E-05 2.50E-03 

 

n
n

n v
x

y 
20

2

 (4) 

 

where w and v are zero-mean Gaussian white noise with 
variances 10 and 1, respectively.  The initial state x0 is 0.1 
with variance 1.   

This example is severely nonlinear both in Eq. (3) and Eq. (4). 
Equation (3) describes that the sign of the state sometimes 
changes.  However, measurement, obtained from square of 
state through Eq. (4), does not have the sign information of 
state.   
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3.2 Results and Discussion 

The average estimation results based on 100 simulations with 
different seeds of random numbers of system and 
measurement noise are shown in Fig. 2 and Table 1.  Figure 2 
shows the real value of the state and the estimation results of 
EKF and PF.  In addition, Table 1 shows the Mean-Squares 
Error (MSE) and CPU time of each filter.  The unit of CPU 
time is sec/time step.  In PF, the number of particles is 100. 

As shown in MSE of Table 1, the state estimation 
performance of PF is higher than that of EKF.  In addition, 
the state estimation value of PF follows the sign change of 
real value at time step = 85-86 in Fig. 2, whereas the state 
estimation value of EKF changes in the direction opposite to 
the sign change of real value.  The reason is as follows. In the 
state estimation, it is preferable that the state distribution has 
two peaks, positive and negative, because the only 1 step 
measurement does not have the sign information of the state.  
In EKF, the state distribution of two peaks is not used 
because the distribution is assumed to be the Gaussian 
distribution.  Meanwhile, the particles can approximate the 
state distribution accurately even when the state distribution 
has two peaks.  As the information about the state and the 
measurement is increased with the passage of time, the sign 
of the state is cleared.  Therefore, EKF can find the sign of 
the state.  However, EKF, which cannot approximate the state 
distribution of two peaks, takes longer time than PF to find it.  
Consequently, the state estimation performance of PF is 
higher than that of EKF.  In addition, PF can keep some 
possibilities of the state as the particles approximate the state 
distribution, which has two peaks, precisely.  Therefore, PF 
can detect the step change of processes rapidly. 

4. TUBULAR MICROREACTOR 

Tubular microreactor (TMR) is a typical microreactor.  TMR 
is used to produce radical polymer; the polymerization of 
butyl acrylate (Iwasaki and Yoshida, 2006), for example.  To 
apply TMR to the real production, it is necessary to develop a 
system that can monitor the operation condition of TMR.  
However, the installation of sensors into the miniaturized 
space sometimes disturbs the flow.  In addition, the existing 
miniaturized sensors are too expensive.  Therefore, it is 
desirable to estimate the unmeasured states and unknown 
parameters of TMR from the limited number of the indirect 
measurements, which is not installed into the flow.  In this 
work, one measurement, wall temperature, is used to estimate 
unknown parameters such as catalyst efficiency.  Few 
researches on the estimation problems of TMR have been 
reported.  In this section, the physical model and process 
model of TMR are explained.  In addition, an estimation 
problem of TMR is solved with two kinds of filters, EKF and 
PF.   

4.1  Process Model 

Figure 3 shows a schematic diagram of TMR which is 
composed of inner channel, outer channel, inner wall and 
outer wall.  Premixed reactants, A and B, are fed into the 
inner channel, and a coolant is fed into the outer channel.  

Each flow is assumed to be plug flow (Peclet number = 100 > 
1), and the inner wall surface is coated with a catalyst.  On 
the catalyst surface, the following sequential and parallel 
reactions take place.   

A11PBA Ckr   (5) 

A22QBA Ckr   (6) 

P33RBP Ckr   (7) 

P is the desired product, and Q and R are by-products.  C is 
the concentration of each material.  Reaction rate constant ki 
(i = 1, 2, 3) is expressed by Arrhenius form.   

 s/exp RTEAk iii   (8) 
 

Frequency factor Ai , activation energy Ei and constant heat 
of reaction ∆Hi in each reaction are shown in Table 2. Ts is 
the catalyst surface temperature.  A and P are selected as key 
components, and heat and mass balances are described by the 
following equations:   
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(9) 
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(14) 

where z and r are the axial and radial coordinates, and other 
variables are explained in Table 3.  As well, subscripts s, f 
and w present catalyst surface, fluid and wall, respectively.  
The catalyst thickness, , is 0.2 mm.  In addition, the discrete 
approximation of Eqs. (9)-(14) using the orthogonal 
collocation method converted them into the state space model.  
The number of discrete points obtained from the roots of 
Chebyshev polynomial is 10 axially and 5 radially.  In the 
following sections, Eqs. (9)-(14) are regarded as a real 
process, and the state space model as a process model.   
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Fig. 3. Schematic diagram of MCF (Tonomura et. al., 2008). 
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Table 2.  Reaction parameters.  

Reaction A i [1/s] E i [J/mol] ΔH i [kJ/mol]
(1) 86760 71711.7 －2980
(2) 37260 71711.7 －4622
(3) 149.4 36026.3 －1664

 

Table 3.  Model parameters.  

Parameter Value 
reactant velocity  v 1 m/s
mass diffusion coefficient  D 1×10－5 m2/s
heat diffusion coefficient  k f 0.041 J/m K s
heat conductivity of wall  k w 16.3 J/m K s
density of reactant   f 1.01 kg/m3

density of wall   w 8000 kg/m3

viscosity of fluid   2.92×10－5 Pa s
heat capacity of reactant  C pf 1090 J/kg K
heat capacity of wall  C p w 500 J/kg K
reactor length L 1 m
channel diameter d 1 mm
wall thickness d w 1 mm
inlet concentration of species A  C A 4 mol/m3

inlet concentration of species P  C P, 0 mol/m3

inlet temperature of reactant T f,in 733 K
coolant temperature T c 733 K

A

P

 

4.2  Sensor Location 

The sensor location must be optimized so as to estimate 
unknown parameters most accurately.  In this work, the 
optimal sensor location is determined based on the 
observability.  When the dimension of the state vector is 
large, calculating the observability covariance oW  

considering perturbation of all states takes the large 
computational load.  Therefore, oW  is segmented to reduce 

the computational load:   


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where pp
oW  is the observability covariance matrix about the 

perturbation of unknown parameters.  In the parameter 

estimation, not oW  but pp
oW  is used.  In this study, an 

unknown parameter, catalyst efficiency, is estimated, and 
pp

oW  is scalar because of a single-parameter estimation.  

Large pp
oW  corresponds to an increase in the observability, 

namely high estimation performance. Average pp
oW  for the 

perturbation, 0.1, 0.2, 0.3 and 0.4, of catalyst efficiency is 

plotted as a function of axial sensor location candidates 

obtained from the roots of Chebyshev polynomial in Fig. 4. 

The largest pp
oW  can be found at 0.117 m from the inlet of 

TMR.   
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Fig. 5.  Estimation results of EKF and PF.   
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Fig. 6.  Estimation result of PF. 

4.3  Monitoring Results : Catalyst deterioration 

The catalyst deterioration is detected through the parameter 
estimation of catalyst efficiency.  The parameter estimation 
of catalyst efficiency is based on the process model of TMR. 
In this study, it is assumed that k1 includes parameter α (0≦ α 
≦ 1) which indicates catalyst efficiency:   

 s111 /exp RTEAk     (16) 

α is assumed to be constant along TMR.  TMR is in the 
steady state until t = 0. At t = 0, α is assumed to be changed 
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from 1 to 0.8.  After catalyst deterioration, α is estimated 
from wall temperature by using EKF and PF.  Sensor is 
located on the radial center of the wall.  The number of 
particles in PF-based estimation is 100.  Figure 5 shows the 
estimation results of α by EKF and PF.  “optimal” and “not 
optimal” correspond to the sensor location, 0.117 m and 
0.413 m from the inlet of TMR, respectively.  The former 
sensor location was obtained in Section 4.2. 

α can be estimated more rapidly and accurately by EKF 

(optimal) than EKF (not optimal).  It is clarified that pp
oW  is 

effective for determining the optimal sensor location.  In 
addition, PF can detect the change of α more rapidly than 
EKF.  However, α cannot be estimated by PF accurately.  
This is due to the initial value of estimation.  In PF, the 
estimation value is updated only through the system equation.  
Therefore, PF cannot estimate α accurately if the difference 
between the initial value and real value is large.  Thus, to 
estimate α more accurately, larger system noise or the initial 
value with broader distribution, which has the possibility of α 
after step change, should be used.  However, larger system 
noise causes violent oscillation of the estimation value.  PF 
using the initial value of α with broader distribution is 
expected to follow α after step change rapidly.  Figure 6 
shows the estimation result of α by PF using the initial value 
of α set 0.6-1.0.  Figure 7 shows the particle distribution of 
“PF (optimal) in Fig. 5”, PF (a), and “PF in Fig.6”, PF (b).  
Table 4 shows the simulation conditions of PF.  In Fig. 5, PF 
(a) cannot estimate α accurately.  Because the difference 
between the initial value of α and real value of α after step 
change is large as shown in Fig. 7.  In Fig. 6, PF (b) can 
estimate α rapidly and accurately.  This is because the initial 
distribution of α has the possibility of α after step change as 
shown in Fig. 7.  Consequently, PF can detect the catalyst 
deterioration rapidly and accurately.   

4.4  Monitoring Results : Blockage 

The blockage is detected through the estimation of flow 
velocity.  TMR is at steady state until t = 0 [s].  If the 
blockage happens under constant pumping pressure, the flow 
velocity decreases.  In t = 0-500 [s], the flow velocity v is 
gradually changed from 1 to 0.8 [m/s].  v is estimated from 
one wall temperature using EnKF and PF.  A temperature 
sensor is located at the radial center of the wall.  The numbers 
of particles and ensemble members are both 100.  Figure 8 
shows the estimation results of PF and EnKF.  Here 
“optimal” and “not optimal” correspond to the sensor 
location, 0.413 [m] and 0.0302 [m] from the inlet of TMR, 
respectively.  PF (optimal) can estimate v more rapidly and 
accurately than PF (not optimal).     

5. CONCLUSIONS 

In this study, it was shown that the estimation performance of 
PF is better than that of EKF for nonlinear state space model 
of a lumped system through the numerical example.  In 
addition, PF and EKF were applied to the change detection of 
the catalyst characteristics of TMR.  It was found that PF can  

Table 4.  Simulation conditions of PF.  
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Fig. 7.  Time transition of the particle distribution (a): PF 
(optimal) in Fig.5, (b): PF in Fig. 6.   

 

detect the catalyst deterioration more rapidly and accurately 
than EKF.  Moreover, PF and EnKF were applied to the 
change detection of the reactant flow velocity of TMR.  It 
was shown that the blockage could be detected more rapidly 
and accurately by using PF than EnKF.  PF is particularly 
promising for developing a process monitoring system for 
microreactors.   
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Fig. 8.  Estimation results of EnKF and PF.   
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