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Abstract: A stochastic formulation for the description of antisolvent mediated crystal growth processes 
is discussed. In the proposed approach the crystal size growth dynamics is driven by a deterministic 
growth factor coupled to a stochastic component. The evolution in time of the particle size distribution is 
then described in terms of a Fokker-Planck equation. In this formulation the specific form of the 
stochastic model leads to different shapes for the probability density function. I this work we investigate 
and assess comparatively the performance of the FPE approach to model the crystal size distribution 
based on different expressions for the stochastic component. In particular, we consider the Langevin 
equation with a multiplicative noise term that depends on the crystal size (time and space). It is shown 
and corroborated via experimentation that the best stochastic model is given by the Geometric Brownian 
Motion (GBM). Excellent quantitative agreement between experiments and the predictions from the FPE-
GBM model were obtained for a range of conditions. Validations against experimental data are presented 
for the NaCl-water-ethanol anti-solvent crystallization system. 
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1. INTRODUCTION 

Antisolvent aided crystallization is an advantageous 
technique of separation where the solute is highly soluble or 
heat sensitive. The driving force in crystal formation is the 
super-saturation that establishes the thermodynamic 
equilibrium for the solid-liquid separation. The development 
of rigorous mathematical models describing the dynamic of 
crystal growth in crystallization processes is based-on 
population balances. At the core of the structured population 
dynamics, the number of crystals in a fed-batch crystallizer is 
increased by nucleation and decreased by dissolution or 
breakage. Structured population balances models provide 
detailed information regarding the crystal size distribution in 
the crystallization unit. However, they demand a great deal of 
knowledge on the complex thermodynamic associated with 
the solute and solvent properties to be adequately 
incorporated in the population balances.  Some important 
contributions in this subject have been reported in the 
literature (Worlitschek and Mazzotti, 2004; Nowee et al., 
2008; Nagy et al., 2008).  
An alternative approach to deal with particulate systems 
characterized by PSD is the Fokker-Planck Equation (FPE) 
(Risken, 1984; Grosso et. al., 2009). The FPE is just an 
equation of motion for the distribution function of fluctuating 
macroscopic variables. The FPE deals with those fluctuations 
of systems which stem from many tiny disturbances, each of 

which changes the variables of the system in an unpredictable 
but small way.   

This work describes a novel stochastic approach for the 
prediction of the PSD in a bench-scale fed-batch 
crystallization unit where anti-solvent is added to speed-up 
the crystal formation process. The crystal growth is modeled 
by a classic logistic equation of common use in theoretical 
ecology (May and McLean, 2007; Grosso et al., 2007). 
Unknown dynamics, internal and external fluctuations and 
sensitivity to initial conditions can be taken into account by 
embedding the logistic equation into the FPE (Grosso et. al. 
2009). 

However, in the FPE formulation the specific form of the 
stochastic model leads to different shapes for the predicted 
probability density function. In this work we investigate and 
assess comparatively the performance of the FPE approach to 
model the crystal size distribution based on different 
expressions for the stochastic model. In particular, we 
consider the Langevin equation with a multiplicative noise 
term that may or not depend on the crystal size (time and 
space). We show that for a special form of the multiplicative 
noise term we can actually shape the probability density 
function of the crystal growth process to adequately represent 
the experimental information. Validations against 
experimental data are presented for the NaCl-water-ethanol 
anti-solvent crystallization system. Experimental data for 
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different operating conditions are used for parameter 
estimation and model validation. 

2. PSD ESTIMATION  

Crystallization is a physical process for solid-liquid 
separation where the solid (solute) is dissolved in the solvent 
(liquid). The driving force in crystal formation is the super-
saturation. The super-saturation condition establishes the 
thermodynamic equilibrium for the solid-liquid separation 
and it can be affected by cooling and evaporation. The super-
saturation can be also induced by addition of precipitant or 
anti-solvent to the solution. The anti-solvent reduces the 
solubility of the solute in the original solvent resulting in 
super-saturation. The anti-solvent aided crystallization is an 
advantageous technique of separation where the solute is 
highly soluble or heat sensitive. 

2.1 Mathematical Model 

The development of rigorous mathematical models 
describing the dynamic of crystal growth in crystallization 
processes are based on population balances. The idea of 
population balances has been widely used in theoretical 
ecology and extended to the modeling of particulate systems 
in chemical engineering. The population balances can be 
either structured or unstructured models.  
At the core of the structured population dynamics, the 
number of crystals in a fed-batch crystallizer is increased by 
nucleation and decreased by dissolution or breakage. 
Structured population balances models provide detailed 
information regarding the crystal size distribution in the 
crystallization unit. However, they demand a great deal of 
knowledge on the complex thermodynamic associated with 
the solute and solvent properties to be adequately 
incorporated in the population balances. Some important 
contributions in this subject have been reported in the 
literature (Worlitschek and Mazzotti, 2004; Nagy et al. 2007; 
Nowee et al., 2007). 

Here, we introduce a simple unstructured population model, 
where the crystals are classified by their size, L. The growth 
of each individual crystal is supposed to be independent on 
the other crystals and is governed by the same deterministic 
model. In order to take into account the growth fluctuations 
and the unknown dynamics not captured by the deterministic 
term, a random component can be introduced (Gelb, 1988). 
The stochastic model can thus be written as a Langevin 
equation of the following type: 

)()(),;( tLgtLLf
dt
dL

η+= θ   (1) 

In Equation 1, f(L,θ, t) is the expected rate of growth of L (the 
deterministic model introduced below), L is the size of the 
single crystal, t is the time, θ is the vector parameter defined 
in the model, g(L)η(t) is the multiplicative noise term where 
g(L) is the diffusion term and η(t) is  the Langevin force. It is 
assumed that: 
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Equation 1 implies that the crystal size L behaves as a 
random variable, characterized by a certain probability 
density function (PDF) ψ(L,t) depending on the state 
variables of the system, i.e. the size L and time t. Incidentally, 
it should be noted that one can regard the probability density 
ψ(L,t) as the relative ratio of crystals having a given 
dimension L in the limit of infinite observations. Thus, from a 
practical point of view, it coincides with the Particle Size 
Distribution experimentally observed. 

The new random variable thus can be described in terms of 
its probability density distribution, ψ(L,t), at any instant of 
time t  and should follow the linear Fokker-Planck Equation, 
FPE: 
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along with the boundary conditions: 
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The reflecting boundary condition in Equation 4a ensures that 
the elements of the population will never assume negative 
values, whereas Equation 4b ensures the decay condition on 
ψ(L,t) as L goes to infinity, for any time. 

The diffusion term g(L) determines the random motion of the 
variable L that takes into account the fluctuation in the 
particle growth process. The well established property of the 
normal diffusion described by the Gaussian distribution can 
be obtained by the usual FPE with constant diffusion term 
(without a drift term). Anomalous diffusion regimes can also 
be obtained by the usual FPE but they arise from a variable 
diffusion term that depends on time and/or space (Fa, 2005). 
Along the same idea, in our formulation the specific form of 
g(L) leads to different shapes for the probability density 
function. In this work we investigate and assess 
comparatively the performance of the FPE approach to model 
the crystal size distribution based on different expressions for 
g(L). In this regard we focus on three possible formulations 
for g(L) as discussed below. 

Case 1: As first option a constant value of g(L) = 2√D can be 
assumed, where D is the typical diffusivity coefficient in the 
FPE formulation. In this case  

)(2),;( tDtLLf
dt
dL

η+ϑ=   (5) 

We should notice that: i) when the deterministic drift term is 
f=0, equation 5 describes the classical Wiener process; ii) 
when f depends linearly on L, Equation (5) describes an 
Ornstein-Uhlenbeck process. In both cases the random 
variable L will follow a Gaussian distribution. Equation 5 can 
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be manipulated to obtain the Langevin equation for the 
random variable y = ln L. 

)(12),;(1 t
L

DtLf
dt
dL

L
η+= θ   (6) 

that is 
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The FPE for the new random variable y can be rewritten as 
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Case 2: Assuming a linear dependency on the crystal size L, 
g(L) = 2 L√D, in this case 

)(2),;( tLDtLLf
dt
dL

η+= θ   (9) 

When f is constant, equation 9 describes a Geometric 
Brownian Motion (GBM). In this case, the associated PDF is 
a lognormal distribution (Ross, 2003), If f depends also on L, 
some (slight) distortions from the ideal lognormal case can be 
however expected. 

Accordingly, equation 9 can be manipulated to obtain the 
Langevin equation for the random variable y = ln L 
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And the corresponding FPE becomes 

),,(),(),(
2

2
θtyhty

yy
D

t
ty

ψ
∂
∂

−
∂

ψ∂
=

∂
ψ∂    (11) 

Case 3: Assuming an intermediate case where g(L) = 2√L √D  

In this case 
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And the corresponding FPE becomes 
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Regarding the deterministic part of the model, our purpose is 
to choose a model as simple as possible, with a parsimonious 
number of adjustable parameters. To this end, the Logistic 
equation (Tsoularis and Wallace, 2002), is possibly the best-
known simple sigmoidal asymptotic function used to describe 
the time dependence of growth processes in an unstructured 
fashion: 
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This choice is mainly motivated by the requirement for a 
simple model with a parsimonious number of adjustable 
parameters, i.e. the growth rate, r, and the asymptotic 

equilibrium value K. The present growth model can be 
regarded as the simplest model taking into account mild 
nonlinearities. In spite of its simplicity, this model provides 
the main qualitative features of a typical growth process: the 
growth follows a linear law at low crystal size values and 
saturates at a higher equilibrium value. 

Finally the evolution in time of the probability density is 
described in terms of a linear, partial differential equation 
depending on the parameters r (linear Malthusian growth 
rate), K (crystal size asymptotic value) and D (diffusivity), 
that are assumed to depend on the feeding conditions. It is 
worth to stress out that the synergy between unstructured 
population balances and the Fokker-Planck equation results 
in structured-like population balances. 

3. EXPERIMENTAL  

For parameter estimation and model validation purposes, 
three different anti-solvent flow-rates were implemented. All 
experiments were carried out in a bench scale crystallizer 
which was kept at a fix temperature. Only purified water, 
reagent grade sodium chloride (99.5%) and ethanol (95%) 
were used. The experimental set-up and procedure are 
described as follows. 

3.1 Experimental Set-up 

The experimental rig is made up of one litre glass, cylindrical 
crystallizer submerged in a temperature controlled bath. The 
temperature in the bath is measured using an RTD probe 
which is wired up to a slave temperature control system 
capable of heating and cooling. In similar fashion, the anti-
solvent addition is carried out by a slave peristaltic pump. 
The master control is performed by a computer control 
system which is wired up to the slave temperature and flow-
rate controllers respectively. The desired set-points are 
calculated at the master controller. All relevant process 
variables are recorded. The crystal size distribution is 
determined by visual inspection of images taken using a 
digital camera mounted in a stereo-microscope at 25 
magnification. The captured images are then processed by 
means of sizing computer software (Amscope). 

3.2 Experimental Procedure 

At the start-up condition, the crystallizer is loaded with an 
aqueous solution of NaCl made up of 34 g of NaCl in 100 g 
of water. The temperature is kept at 25 °C. Then ethanol was 
added to the aqueous NaCl solution using a calibrated 
peristaltic pump. Along the operation, 5 ml samples were 
taken in an infrequent fashion. The samples are then 
measured off-line using the particle size analyzer. Also, part 
of the sample was vacuum filtered over filter paper and then 
dried in an oven at 50 °C for further visual inspection. 
Figures 1 and 2 illustrate the images obtained at the first 
sampling time and at the end of the experiment sampling time 
for the medium antisolvent flow-rate of 1.5 ml/min 
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Figure 1: Feed rate 1.5 ml/min. NaCl crystals at ht 5.0=  
 

 
 

Figure 2: Feed rate 1.5 ml/min.NaCl crystals at ht 8=  
 
The captured images, for each sampling point during batch 
run, are then processed by means of the sizing computer 
software (Amscope) to obtain the particle size distribution 
(see histogram in Figure 3). 
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Figure 3: Relative frequency density of the crystal sample at feed 
rate u0 = 1.5 ml/min and t = 0.5 h (bars), compared with the kernel 
approximation (solid line). The n observations of the sample are also 
reported at the bottom of the figure (black points) 

3.3 Characterization of the experimental PSD 

The crystal size sample is further processed in order to infer 
the related probability density function. To this end, a non-
parametric method was used and the experimental probability 
density distribution was eventually estimated as a linear 
combination of kernel basis function: 
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where n is the crystal sample dimension, Li is the i-th 
observation and the bandwidth parameter h is given by 
(Silverman, 1986): 

2.0206.1 −= nsh L  (16) 

In Equation (16), sL
2 is the sample variance. An example of 

the distribution estimation obtained with the crystal sample is 
reported in Figure 3. 
Figures 4 and 5 illustrate the experimental PSD evolution 
(obtained using the kernel density estimation) with time for 
the intermediate feed rate (1.5 ml/min) both in the linear and 
logarithmic scale. 
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Figure 4: Obtained PSD from experimental data for intermediate 
antisolven feed rate of 1.5 ml/min at different sampling times during 
the batch (linear scale) 
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Figure 5: Obtained PSD from experimental data for intermediate 
antisolven feed rate of 1.5 ml/min at different sampling times during 
the batch (logarithmic scale) 

4. RESULTS AND DISCUSSION 

4.1 Parameter Estimation 

Model calibration for the estimation of parameters is carried 
out separately for every run. The parameters to be estimated 
are: θ = [log(D), r, K] (log(D) is used instead of D in order to 
reduce the statistic correlation between the parameters). It 
should be noted that direct measurements of the Particle Size 
Distribution are available at N different spatial locations and 
at M different time values for every operating condition, i.e. 
anti-solvent flow rate. Parameter inference is accomplished 
by using the least square criterion, thus searching the 
minimum of the objective function: 

Copyright held by the International Federation of Automatic Control 398



 
 

     

 

( ) ( ) ( ) ( )( )∑∑
= =

ψ−ψ=Φ=Φ
M

j

N

k
jkjk tytyDKr

1 1

2
expmod ,;,,, θθ (15) 

In Equation 15, ψmod(yk,tj) is the probability density function 
evaluated through numerical integration of Equations 8, 11 
and 13 (corresponding to the appropriate model selected, at 
time tj and size coordinate yk, while the distribution ψexp(yk,tj) 
is the experimental observation of the PSD for the size 
coordinate yk at time ti.  
The three parameters for the Fokker-Planck equation were 
estimated based-on experimental data obtained by monitoring 
the mean size distribution for different flow rates of anti-
solvent. For every operating condition, that is, anti-solvent 
flow rate, a set of parameters θ = [r, K, D] is estimated using 
a nonlinear least-square algorithm. The values for the 
estimated parameters are given in the Table 1. 

 Feed Flow r  K  log D  
Case 1 

DLg 2)( =  
0.7 0.0746 7.200 1.169 
1.5 0.0356 7.993 1.134 
3.0 0.0642 8.530 1.328 

Case 2 
LDLg 2)( =  

0.7 1.254 4.840 0.952 
1.5 1.038 4.691 1.025 
3.0 1.241 4.661 1.026 

Case 3 
LDLg 2)( =  

0.7 0.914 4.863 0.952 
1.5 1.038 4.691 1.025 
3.0 1.116 4.672 0.981 

 
Table 1: Estimated parameters for the different operating conditions 
for the three models investigated 
 

4.2 Model Comparisons and Validation 

Figure 6 illustrates (in the logarithmic scale) the comparison 
between the predicted particle size distribution using the 
three alternative models for the end the batch and for 
intermediate antisolvent flowrate of 1.5 ml/min. Figure 7 
illustrates the same conditions but in the linear scale. 

 
Figure 6: Comparison between model predictions and experimental 
probability density functions for intermediate feeding rate of 1.5 
ml/min (logarithmic scale) 

It is clear from the figures that the use of the GBM as 
stochastic component is more appropriate to describe the 
PSD of the crystallization process. 

 
Figure 7: Comparison between model predictions and experimental 
probability density functions for intermediate feeding rate of 1.5 
ml/min (linear scale) 
 
The differences on the predictive features of the models are 
even more evident in the normal scale. More insight into the 
descriptive characteristics of the alternative models can be 
obtained by analyzing the time evolution of the experimental 
observations and the corresponding model prediction for first 
moments of the distribution, i.e., the mean, µ and the 
variance σ2:  

∫ ∫Ω
Ω

µ−=σ=µ dLtLtLtdLtLLt ),(2))(()(;),(()( 2 ΨΨ  (16) 

 

 
Figure 8: Mean of the Crystal Size Distributions for the three 
feeding rates and three different models. Square points are the 
experimental observation. 

 

 
Figure 9: Variance of the Crystal Size Distributions for the three 
feeding rates and three different models. Square points are the 
experimental observation. 

Figures 8 and 9 show, respectively, the mean and variance 
experimentally observed (squared points) compared with the 
theoretical predictions (solid line g(L)= 2 L √D; dashed line 
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g(L)= 2 √L√D and dotted line g(L)= 2 √D) for the three runs 
and for the three models as a function of time. The agreement 
again is excellent at each time using the GBM stochastic 
component and the FPE model, driven by its deterministic 
part (the logistic growth term), correctly describes the 
increasing trend of the average crystal growth. On the other 
hand, the performance of the model deteriorates when using 
the alternative models both in terms of the mean and variance 
predictions.  
Finally, Figure 10 reports the comparison (in terms of time 
evolution) of the PSD experimentally observed and the model 
prediction (using the FPE-GBM model) for the experiment at 
low, medium and high feed rates, at the first and final 
acquisition time. It is evident that there is an excellent 
quantitative agreement between experiments and the 
predictions from the phenomenological model. In particular, 
the model is able to correctly capture the log-normal shape of 
the experimental PSD as well as follow the dynamic of the 
crystal growth for a range of operating conditions. 

 
Figure 10: Comparison between model and the experimental 
probability density functions for the three feeding rates and at the 
first sampling time and at the end of the batch sampling time. 

5. CONCLUSIONS 

A stochastic formulation for the prediction of the antisolvent 
crystal growth processes has been discussed. The crystal size 
is considered as a random variable, whose probability density 
evolution in time is described in terms of a Fokker-Planck 
equation. In the proposed formulation the specific form of the 
stochastic model chosen leads to different shapes for the 
probability density function. We have investigated and 
assessed comparatively the performance of the FPE approach 
to model the crystal size distribution based on different 
expressions for the stochastic component. It is shown and 
corroborated via experimentation that the best stochastic 
model is given by the Geometric Brownian Motion (GBM). 
Excellent quantitative agreement between experiments and 
the predictions from the FPE-GBM model were obtained for 
a range of conditions. In particular, the model was able to 
correctly capture the log-normal shape of the experimental 
PSD. The model was tested on data provided in a bench-scale 

fed-batch crystallization unit where anti-solvent is added to 
speed-up the crystal formation process. The FPE-GBM 
formulation appears as a powerful predictive tool, as 
confirmed by the excellent agreement with the experiments, 
to represent the anti-solvent crystal growth process. 
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