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Abstract:
This study investigates the effectiveness of various nonlinear estimation techniques for output
feedback model-based control of batch crystallization processes. Several nonlinear observers
developed under deterministic and Bayesian estimation frameworks are applied for closed-loop
control of a semi-industrial fed-batch crystallizer. The performance evaluation is done in terms
of closed-loop behavior of the control strategy and its ability to cope with model imperfections
and process uncertainties such as measurement errors and uncertain initial conditions. The
simulation results suggest that the extended and the unscented Kalman filters perform best in
terms of fulfilling the control objective. Adopting a time-varying process noise matrix, which
is particularly suited for batch processes, further enhances the accuracy of state estimates
at the expense of a slight increase in computational burden. The results also indicate that
model imperfections and process uncertainties rather significantly deteriorate the closed-loop
performance of the controller due to inaccurate state estimation.

Keywords: Batch crystallization; Moment model; Nonlinear model-based control; Observer;
Kalman filters; Moving horizon estimator

1. INTRODUCTION

Batch crystallization is widely used in the pharmaceutical,
food and fine chemical industries for the production of high
value-added specialty chemicals. Model-based control of
these processes in a closed-loop fashion typically requires
knowledge of the system states. Despite the advent of
process analytical technology in recent years (Braatz,
2002), on-line measurement of all process variables is not
often viable due to various technological and economical
limitations. The so-called state observers that combine
information from two sources, namely a process model and
available on-line measurements, can be utilized to estimate
the states of a dynamic system in real time. Observers use
measurement information to improve the quality of state
estimates obtained by real-time simulation of the process
model. This is done through a correction mechanism that
essentially accounts for model imperfections and process
uncertainties such as measurements errors and uncertain
initial conditions.

Nonlinear observers can be broadly classified into two cate-
gories, namely the techniques developed under a determin-
istic framework and those developed under the Bayesian
framework. While the deterministic observers neglect any
noise acting on the system, the nonlinear observers devel-
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oped under the Bayesian framework formulate the state es-
timation problem in a probabilistic setting. The estimation
problem aims to construct probability density function
(pdf) of the states, given that the process model and the
measurements are subject to random disturbances.

The most widely used variant of the nonlinear stochastic
observers is the extended Kalman filter (EKF). The EKF
may result in significant estimation errors when the system
is highly nonlinear or the state pdfs are non-Gaussian. In
order to alleviate the shortcomings of the EKF, derivative
free stochastic observers, namely the unscented Kalman
filter (UKF) (Julier and Uhlmann, 2004) and Monte Carlo
filters (Gordon et al., 1993) have been developed. While
the state pdfs are assumed to be Gaussian, the UKF
circumvents the need for computing the Jacobian matrices
that may render the application of the EKF impractical
for non-differentiable systems. On the other hand, Monte
Carlo filters can handle nonlinear process dynamics with-
out making any assumptions neither on the nature of the
dynamics nor on the shape or any other characteristic
of the pdfs. The estimation techniques developed under
the Bayesian framework also include optimization-based
observers. This approach enables explicit inclusion of con-
straints in the nonlinear estimation problem (Rawlings
and Bakshi, 2006). In contrast to the stochastic observers,
which make use of the most recent measurements, these es-
timators utilize measurements obtained over a certain time
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horizon to correct for the observation error. Optimization-
based observers generally need not any assumption neither
on the state pdfs nor on the noise sequences acting on the
system.

This study is intended to investigate the effectiveness of
several nonlinear observers for output feedback model-
based control of industrial batch crystallizers. Successful
implementation of a model-based control strategy largely
relies on estimation accuracy of the current system states,
which are utilized to make predictions of the process
dynamics in future. The extended Luenberger observer
and the extended Kalman filter are the most commonly
used techniques for nonlinear state estimation in model-
based control of batch crystallizers; see, e.g., Zhang and
Rohani (2003) and Mesbah et al. (2008). Nonetheless,
the shortcomings of these observers in coping with the
highly nonlinear dynamics of crystallization systems that
are subject to large process uncertainties necessitate the
recourse to estimation techniques which better suit the
inherent characteristics of batch crystallizers. Several state
estimation techniques, including deterministic, stochastic
and optimization-based techniques, are used to develop
nonlinear observers for a semi-industrial seeded batch crys-
tallizer. The dynamics of the process at hand are repre-
sented by a reduced-order moment model. The nonlinear
observers are embedded in a model-based control frame-
work. This facilitates comparative performance analysis of
the observers in terms of their closed-loop control behavior
as well as their ability to cope with model imperfec-
tions and process uncertainties. This paper aims to give
an overview of the pros and cons of the aforementioned
nonlinear estimation techniques when applied for on-line
control of industrial batch crystallizers.

2. NONLINEAR STATE ESTIMATION TECHNIQUES

The class of nonlinear systems of interest is formulated in
a discrete-time state space form

xk = f(xk−1, uk−1, wk−1)
yk = h(xk, uk, vk),

(1)

where xk is a vector of state variables, whose initial values
are random variables with a given pdf; uk is a vector
of measured process inputs that are assumed to be con-
stant over the time interval [tk−1, tk]; yk is a vector of
output measurements; f(xk−1, uk−1, wk−1) is a nonlinear
process model, which is generally the solution of a system
of differential algebraic equations over the time interval
[tk−1, tk]; h(xk, uk, vk) is a possibly nonlinear measure-
ment model; wk is a vector of process noise with E[wk] = 0
and E[wkwT

k ] = Qk; vk is a vector of measurement noise
with E[vk] = 0 and E[vkvT

k ] = Rk. In the following, the
algorithms of the nonlinear state estimation techniques
considered in this work are presented.

2.1 Extended Luenberger Observer

For a deterministic system, i.e. w = 0 and v = 0, an
extended Luenberger-type observer (ELO) (Zeitz, 1987)
can be established as

x̂k+1 = f(x̂k, uk) + Kk(yk − h(x̂k, uk)), (2)

where x̂k is an estimate of the state vector and Kk is the
observer gain that determines the convergence properties

of the observer. The goal of the ELO is to provide an
estimate of the state vector such that the observation error

ek+1 = xk+1 − x̂k+1 = f(x̂k + ek, uk) − f(x̂k, uk)−
Kk(h(x̂k + ek, uk) − h(x̂k, uk))

(3)
is minimal. For nonlinear systems, a condition, under
which the error converges to zero, cannot be readily
deduced from the error dynamics. This implies that the
observer gain needs to be determined on the basis of a
linearized version of the original process model. Thus,
linearizing the nonlinear model around e = 0 yields
(Dochain, 2003)

ek+1 = (Ak − KkCk)ek, (4)

where Ak = [∂f(xk,uk)
∂x

]xk=x̂k
and Ck = [∂h(xk,uk)

∂x
]xk=x̂k

are linear approximations of the nonlinear process dynam-
ics around the estimated state vector x̂k. The choice of the
observer gain Kk relies on local stability properties of the
state estimator. The gain should be chosen such that the
linearized error dynamics are asymptotically stable.

In general, the estimation accuracy of the ELO largely
depends on how well the linearized model represents the
nonlinear process dynamics. Initialization of the observer
is also crucial since accurate linearization of process and
measurement functions around e = 0 requires that the
observer is initialized sufficiently close to the true states.

2.2 Extended Kalman Filter

The extended Kalman filter, which is founded on the no-
tion presented by Kalman and Bucy (1961) for linear sys-
tems, is the most widely used state estimation technique
in diverse process control applications. This is due to its
relatively easy implementation and limited computational
burden (Soroush, 1998). The EKF requires that the initial
state variables x0 and the noise sequences acting on the
system, i.e. w and v, to be random variables with Gaussian
distributions. The latter pdfs however remain no longer
Gaussian once undergone through nonlinear transforma-
tions. Hence, the EKF presents a suboptimal solution to
the state estimation problem of nonlinear systems since
it assumes that the random variables still retain their
Gaussian distribution after the transformation.

The EKF has a recursive algorithm consisting of two parts,
namely the prediction stage and the measurement correc-
tion stage. In the former stage, the a priori state estimates
x̂k+1|k and their associated error Pk+1|k are determined
by propagating the mean x̂k|k and covariance Pk|k of the
state pdfs at the preceding time step through the nonlinear
process model and its first order linearization, respectively,

x̂k+1|k = f(x̂k|k, uk, wk)
Pk+1|k = FkPk|kFT

k + WkQkWT
k ,

(5)

where Fk = [∂f(xk,uk,wk)
∂x

]xk=x̂k|k
and Wk = [∂f(xk,uk,wk)

∂w
].

Subsequently, in the measurement correction stage the
a posteriori state estimates x̂k+1|k+1 and their error
Pk+1|k+1 are calculated using current measurements yk

x̂k+1|k+1 = x̂k+1|k + Kk(yk − h(x̂k+1|k, uk, vk))
Pk+1|k+1 = (I − KkHk)Pk+1|k.

(6)

Kk is the Kalman filter gain defined as

Kk = Pk+1|kHT
k (HkPk+1|kHT

k + VkRkV T
k )−1, (7)
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where Hk = [∂h(xk,uk,vk)
∂x

]xk=x̂k+1|k
and Vk = [∂h(xk,uk,vk)

∂v
].

Despite its extensive use, the EKF suffers from several
practical shortcomings, namely its inapplicability to highly
nonlinear, non-differentiable systems, difficult tuning and
inability to systematically incorporate state constraints. A
critical evaluation of the extended Kalman filter is given in
(Wilson et al., 1998), where the authors have raised their
serious doubts on the usefulness of the EKF in industrial
applications.

2.3 Unscented Kalman Filter

The unscented Kalman filter is primarily developed to
alleviate the main deficiency of the EKF, i.e. linear approx-
imation of the nonlinearities, by applying the unscented
transformation to the Kalman estimation notion. Accord-
ing to Julier and Uhlmann (2004), the underlying idea is
to approximate the Gaussian pdf of the states by a num-
ber of deterministically chosen points, the so-called sigma
points, such that their mean and covariance match those
of the prior distribution. These points are then propagated
through the nonlinear system model to determine expecta-
tions and covariances of the state estimates. Clearly, this
is in contrast to the EKF that propagates only a single
point through a linearized version of the original system
model.

The filter algorithm is defined on the basis of the same
steps as in the EKF. A set of 2n + 1 symmetric sigma
points, where n denotes the dimension of the state vector,
is generated around the means of the set with a distance of
the square root of the covariances. Once the sigma points
are chosen, they are propagated through the nonlinear
model equations to calculate the predicted mean and
covariance based on the transformed set of points

χi
k+1 = f(χi

k, uk, wk)

Pk+1|k =
2n+1
∑

i=1

Wi[χ
i
k+1 − x̂k+1|k][χi

k+1 − x̂k+1|k]T

x̂k+1|k =

2n+1
∑

i=1

Wiχ
i
k+1.

(8)

It is evident that the prediction stage differs from the EKF
in that the unscented Kalman filter does not linearize
the nonlinear model. Instead, it propagates a cluster of
points, centered around the current state estimates, to
more accurately approximate mean and covariance of the
state pdfs. The a priori state vector and its associated
covariance are then updated using measurements yk

γi
k+1 = h(χi

k, uk, vk)

ŷk+1|k =

2n+1
∑

i=1

Wiγ
i
k+1

Pyy,k+1|k =
2n+1
∑

i=1

Wi[γ
i
k+1 − ŷk+1|k][γi

k+1 − ŷk+1|k]T

Pxy,k+1|k =

2n+1
∑

i=1

Wi[χ
i
k+1 − x̂k+1|k][γi

k+1 − ŷk+1|k]T

Kk = Pxy,k+1|kP−1
yy,k+1|k

x̂k+1|k+1 = x̂k+1|k + Kk(yk − ŷk+1|k)
Pk+1|k+1 = Pk+1|k − KkPyy,k+1|kKT

k ,

(9)

where Wi denote the weighting coefficients.

The computational efficiency of the UKF is comparable to
that of the EKF; being in the order of O(n3) operations,
provided that the dimension of the state vector is large
compared to the number of measurements. The UKF is
however easier to implement and provides at least second
order accuracy for the covariance approximations, while
the EKF is only accurate up to the first order moment of
the pdfs.

2.4 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) (Evensen, 1997),
belonging to the broader class of Monte Carlo filters,
constitutes a class of derivative free nonlinear filters that
can cope with multimodal and non-Gaussian distributions.
The EnKF is a suboptimal estimator, where the error
statistics are predicted by solving the Fokker-Planck equa-
tion by means of a Monte Carlo method. The underlying
notion of the EnKF is to represent the state pdfs by a
large ensemble of randomly chosen states, which aims to
describe all statistical properties of the system variables.
Integrating the ensemble members forward in time accord-
ing to the stochastic system dynamics is equivalent to
solving the Fokker-Planck equation using a Monte Carlo
method.

In the prediction stage of the filter algorithm, a set of
sample points, i.e. x̂i

k|k, that describes the statistics of the

state pdfs is generated using the Monte Carlo sampling.
The sample points are propagated through the nonlinear
system to compute a cloud of transformed sample points

x̂i
k+1|k = f(x̂i

k|k, uk, wk). (10)

These sample points are then used to estimate the a priori
sample mean and error covariance matrices

x̄k+1|k =
1

N

N
∑

i=1

x̂i
k+1|k

ȳk+1|k =
1

N

N
∑

i=1

h(x̂i
k+1|k, uk, vk)

Exk+1|k
= [x̂1

k+1|k − x̄k+1|k · · · x̂N
k+1|k − x̄k+1|k]

Eyk+1|k
= [ŷ1

k+1|k − ȳk+1|k · · · ŷN
k+1|k − ȳk+1|k]

Pxy,k+1|k =
1

N − 1
Exk+1|k

ET
yk+1|k

Pyy,k+1|k =
1

N − 1
Eyk+1|k

ET
yk+1|k

.

(11)
The error covariance matrices are defined around the
ensemble mean, implying that the ensemble mean provides
the best estimate of the state variable and the spread
of the ensemble members around the mean is a natural
definition of the error of the ensemble mean. Finally, the
EnKF performs an ensemble of parallel data assimilation
steps to obtain the a posteriori state estimates

Kk = Pxy,k+1|kP−1
yy,k+1|k

x̂i
k+1|k+1 = x̂i

k+1|k + Kk(yk − h(x̂i
k+1|k, uk, vk))

x̄k+1|k+1 =
1

N

N
∑

i=1

x̂i
k+1|k+1.

(12)

The computational cost of the EnKF is in the order of
O(pNn) operations, where p is the number of outputs of
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the system, N is the ensemble size and n is the dimension
of the state vector (Gillijns et al., 2006). Thus, if N << n,
the computational burden of the EnKF will be less than
that of the EKF. When N is large, the EnKF will however
become computationally too expensive since the model
needs to be simulated N times.

2.5 Moving Horizon Estimator

What distinguishes the moving horizon estimator from
other estimation techniques is its ability to incorporate
constraints in the estimation problem. The MHE is an
optimization-based estimator, wherein the state estimates
are obtained by solving a minimization problem such as
the sum of squared errors (Robertson et al., 1996). On
the contrary to the classical state estimators, which only
utilize the most recent measurements to update the model
predictions, the MHE uses measurements gathered over a
certain time interval for the observer correction.

The moving horizon estimation problem can be stated
in its most general form as the solution of the following
optimization problem (Rao and Rawlings, 2002)

min
xT−P ,{wk}

T−1

k=T−P

T−1
∑

k=T−P

||vk||
2
R−1 + ||wk||

2
Q−1+

ZT−P (xT−P )

subject to : equation (1)
xk ∈ X,wk ∈ W, vk ∈ V,

(13)

where the sets X, W and V can be constrained; P is
the horizon size. Equation (13) implies that the last P
measurements are explicitly used to solve the optimal
estimation problem over time horizon T −P ≤ k ≤ T − 1.
The remaining process measurements are accounted for
by using function ZT−P (xT−P ), the so-called arrival cost
term, which essentially summarizes the effect of the prior
measurement information on the state estimates at time
instant T − P . In fact by providing a means to compress
data, the arrival cost term facilitates the transformation of
an infinite dimensional optimization problem into one of
finite dimension. Exact algebraic expressions for the arrival
cost term only exist for unconstrained, linear systems
under Gaussian assumptions, where the moving horizon
estimator reduces to the Kalman filter. In the case of
constrained, nonlinear systems the arrival cost term needs
to be approximated in order to compute the error co-
variance of the estimated states at time instant T − P .
Adequate approximation of the arrival cost term is crucial
to guaranteeing stability and performance of the MHE.

3. CASE STUDY: A SEMI-INDUSTRIAL FED-BATCH
CRYSTALLIZER

The above discussed estimation techniques are used to de-
sign nonlinear observers for seeded fed-batch evaporative
crystallization of an ammonium sulphate-water system.
The crystallization tales place in a semi-industrial crystal-
lizer. In general, the nonlinear dynamics of crystallization
systems are described by a set of differential algebraic
equations

ẋ = f(t, x, z, y, u, θ) x(t0) = x0

0 = g(t, x, z, y, u, θ)
y = h(t, x, z, y, u, θ),

(14)

Table 1. Computational times of the observers

Nonlinear observer Average CPU-time ∗

of one iteration, s

ELO 0.012
EKF 0.012
EKF (Time-varying Q) 0.013
UKF 0.032
UKF (Time-varying Q) 0.033
EnKF 0.157
MHE 0.424

∗ The reported CPU-times correspond to the Microsoft Win-
dows XP (Professional) operating system running on a Genuine
Intel(R) T2050 @1.60GHz processor with 1 GB RAM.

where f , g and h are the sets of explicit system state,
algebraic and output equations, respectively; t is the time;
x is the state vector; z is the vector of algebraic vari-
ables; y is the vector of measurements; u is the vector
of process inputs; θ is the model parameter set. For the
system at hand, the state vector contains the five leading
moments of crystal size distribution (CSD) and the solute
concentration, whereas the vector of algebraic variables
consists of kinetic variables, namely total nucleation and
crystal growth rates. As the evolution of CSD throughout
a batch run is measured, the five leading moments of
CSD comprise the output vector. On the other hand, heat
input to the crystallizer serves as the only mechanism
to generate supersaturation and consequently govern the
crystallization process. Note that in equation (14) x0 rep-
resents the initial states of the system determined by the
seed characteristics and the initial solute concentration.
A detailed description of the fed-batch crystallizer under
study and its nonlinear process model can be found in
(Mesbah et al., 2009).

In order to assess the performance of the nonlinear estima-
tion techniques for on-line closed-loop control of the crys-
tallizer, the observers are embedded in an output feedback
model-based control framework; see Fig. (1). As discussed
in (Mesbah et al., 2008), the observer plays a key role
in this control strategy through estimating the states of
the system at each sampling time interval when measure-
ments ymeas become available. The estimated states x̂ are
used to recursively initialize the dynamic optimizer, which
calculates the optimal operating policy of the crystallizer,
i.e. uopt, such that a maximum admissible crystal growth
rate is maintained throughout a batch run. In this study,
the model-based control strategy is applied to a plant
simulator that simulates the system by using exactly the

εd

uopt

Rigorous 
Process Model

Dynamic 

Optimizer

Nonlinear 

Observer

ymeas

x̂̂

Plant Simulator

+
+

+
+

Fig. 1. Output feedback model-based control framework.
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Fig. 2. Estimation errors of the 2nd moment of CSD under
the nominal scenario.

same nonlinear process model as the one incorporated
in the observer and the dynamic optimizer. The closed-
loop performance of the control strategy, which is largely
dependent on the quality of state estimates, is evaluated
under the following scenarios:

• nominal case, where the measurements are corrupted
by random noise sequences possessing normal distri-
butions;

• uncertain case, which aims to examine how well the
control objective, namely the reference crystal growth
rate trajectory tracking, is fulfilled in the presence of
model imperfections and process uncertainties.

The tuning parameters of the observers remain fixed under
the two scenarios in order to have a fair performance eval-
uation. The errors associated with the estimated states are
expressed in terms of the normalized root mean squared
error (NRMSE)

NRMSE =

√

E
[(x(t) − x̂(t)

x(t)

)2]
, (15)

where the expected value of the relative estimation errors
is defined on the basis of 50 simulation runs.

Fig. (2) shows the estimation errors of the 2nd moment
of CSD for all nonlinear observers under the nominal
scenario. Amongst the five leading moments of CSD, the
control objective, which is calculated on the basis of the
solute concentration estimates, is more closely related to
the 2nd moment. As can be seen, the ELO exhibits the
worst estimation accuracy, whereas the other observers, in
particular the EKF and the UKF, provide state estimates
with considerably less errors. This is attributed to the
inability of the ELO to effectively cope with measurement
noise due to its deterministic estimation framework. In
order to further improve the quality of state estimates
obtained by the EKF and the UKF, a time-varying process
noise matrix that particularly suits batch processes is
adopted (Valappil and Georgakis, 2000). Fig. (2) suggests
that the latter tuning approach results in a better estima-
tion quality. As shown in Table (1), the additional com-
putational effort required for computing the time-varying
process noise matrix is small.
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Fig. 3. Errors in the reference crystal growth rate trajec-
tory tracking under the nominal scenario.

The extent to which the estimation quality of states influ-
ences the effectiveness of the model-based control strategy
in terms of the reference crystal growth rate trajectory
tracking is investigated. Fig. (3) shows the normalized root
mean squared errors of the control objective. The errors
are calculated on the basis of deviations of the crystal
growth rate with respect to its reference trajectory in the
time frame over which the control objective can be fulfilled.
As can be seen, the relatively poor state estimation by the
ELO and the MHE leads to ineffective fulfillment of the
maximum admissible crystal growth rate. On the other
hand, as expected, the Kalman filters allow the controller
to more closely track the reference trajectory that in turn
will result in a product with the desired quality attributes.
The increase in estimation errors at approximately 7500 s
is due to the inability of the controller to closely follow the
reference trajectory at all times during a batch run.

The capacity of the nonlinear observers in coping with
model imperfections and process uncertainties is investi-
gated under the uncertain scenario. The kinetic parame-
ters of the underlying model of the control strategy are
varied for 35% with respect to their nominal values in the
plant simulator. Process uncertainties are induced through
uncertain initial conditions and systematic measurement
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Fig. 4. Errors in the reference crystal growth rate trajec-
tory tracking under the uncertain scenario.
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Fig. 5. Normal probability distribution of the crystal
growth rates estimated by the UKF.

errors. The five leading moments of CSD and the solute
concentration used to initialze the controler’s model are
varied for 5% and 2%, respectively, with respect to their
nominal values. Alongside the stochastic noise, the process
measurements, i.e. the moments of CSD, are corrupted
by a 5% off-set with rescpect to the actual model out-
puts. As shown in Fig. (4), the model-based controller
fails to tightly follow the reference trajectory. The process
uncertainties lead to a rather significant deviation of the
crystal growth rate from its reference trajectory. This is
due to the inability of the observers to effectively deal
with systematic measurement errors and uncertain initial
conditions. A remedy for this problem is the inclusion of
augmented states in order to effectively account for the
off-set in the closed-loop control performance. Fig. (5)
depicts the normal probability distribution of the crystal
growth rate estimated by the UKF under both scenarios;
the dashed line represents the maximum admissible crystal
growth rate. It is well-evident that the crystal growth rates
infered under the uncertain scenario exhibit a rather large
off-set with respect to the reference trajectory. This may
considerably degrade the product quality. On the other
hand, the effectiveness of the EKF and the UKF in pro-
viding accurate state estimates under the nominal scenario
enables the controller to achieve its objective fairly well.

4. CONCLUSIONS

Several nonlinear observers developed under deterministic
and Bayesian estimation frameworks have been applied for
output feedback model-based control of a semi-industrial
fed-batch crystallizer. The simulation results indicate that
the state estimates provided by the ELO and the MHE
in the presence of stochastic measurement noise are of
somewhat worse quality than those made by the Kalman
filters, whose estimation ability can even be further en-
hanced by adopting a time-varying process noise matrix.
This is due to the deterministic estimation framework of
the ELO and the elimination of the arrival cost term in
the MHE that in fact reduces its Bayesian framework to
a deterministic optimization-based estimation technique.
The simulation results also suggest that the model-based
controller fails to adequately fulfill its objective in the
presence of model imperfections and process uncertainties

due to the inability of the nonlinear observers to provide
accurate state estimates.
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