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Abstract: Decisions during the early stages of R&D are often made under substantial 
uncertainty. Evaluation of R&D alternatives under uncertainty generally does not provide a 
clear choice that is best under all possible scenarios. For optimal investment of R&D 
resources, it is important to identify the key uncertainty contributors from a decision maker’s 
perspective. Global sensitivity analysis (GSA) is a tool that can be used to determine key 
uncertainties that contribute the most to the variance of the bottom-line objective. It is often 
the case, however, that GSA  is not able to distinguish between the uncertainties. Motivated by 
this, we propose a new tool called conditional – global sensitivity analysis, which further 
considers the decision-maker’s risk preference. The conditional sensitivity measures 
(cGSAup/cGSAdown) quantify the contributions of different individual uncertainty factors to the 
upper and lower halves of the distribution function of the objective function. It is argued that 
the use of cGSAup may appeal to a risk-aversive decision maker as it leads to a lower rate of 
false acceptance decisions at the expense of a higher rate of false rejection decisions, whereas 
the use  cGSAdown does the opposite.    
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1. INTRODUCTION 

Evaluation of the key uncertainty contributors in the 
R&D process is an essential step to reduce the cost of the 
whole process. Global sensitivity analysis (GSA) and 
expected value of information (EVOI) are two tools that can 
be used to estimate the key uncertainty contributors. Global 
sensitivity analysis considers variance as a measure of risk 
and the importance of various uncertainties is measured as 
the fraction of the overall variance contributed by each 
uncertain factor. On the other hand, EVOI directly measures 
the value of reducing uncertainty in each factor. 

The evaluation of GSA is significantly simpler than 
that of EVOI since the calculation of EVOI requires more 
detailed information about the effect of experimentation on 
the uncertainty. Though, EVOI provides more direct and 
therefore useful information than GSA from a decision-
maker’s standpoint, the computational load associated with 
the EVOI limits its usefulness. In this work we supplement 
the traditional GSA approach with a new tool called 
conditional global sensitivity analysis (cGSA), which 
provides further insight into the selection of the key 
uncertainty. 

 
For a R&D investment decision, there are two sides 

to the problem. First is the R&D investment cost, e.g., the 
experimentation cost. Second is the return or profits when the 
R&D project becomes successful. In order to make the 
overall process more profitable, one can either focus on the 
reduction in the R&D cost or on maximizing the probability 
of success of chosen projects. To address the two different 
strategies we consider two different risk behaviours of the 
decision maker: 

(a). Decision Delayer / Just A Few Alternatives: This type 
of decision maker wants to ensure a high probability of 
success and is ready to accept a relatively high R&D expense. 
If there are just a few alternatives, one is more focused on 
maximizing the probability of success. In such cases, one is 
more concerned with not removing a potentially successful 
alternative than reducing  the cost of higher R&D investment. 
Hence such a decision maker would prefer an approach that 
will lead to a lower FALSE REJECTION rate, even if it 
requires that the decision maker has to bear a higher FALSE 
ACCEPTANCE rate.  
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(b). Decision Maker / Many Alternatives: This type wants to 
minimize the R&D investment and is ready to accept a 
relative lower probability of success. If there are large 
numbers of alternatives, it is needed to trim down the options 
to just a few alternatives. Hence a decision maker in such a 
situation would prefer an approach that will lead to a lower 
FALSE ACCEPTANCE rate, even if it entails a higher 
FALSE REJECTION rate. 

 
When GSA is not able to distinguish between the 

uncertainties, cGSA (either cGSAdown or cGSAup) can be used 
for deciding the key uncertainty factor, depending on the 
situation and the decision maker’s risk attitude.    

 
The rest of the paper is structured as follows: 

Section 2 presents the background about GSA. Section 3 
presents the new approach, cGSA, along with the algorithm to 
calculate cGSA and discusses the risk behaviours cGSAup and 
cGSAdown support. Various examples to illustrate the utility of 
cGSA are presented in Section 4 and Section 5 concludes the 
chapter.  

2. BACKGROUND 

2.1 Global Sensitivity Analysis (GSA) 

GSA calculates the relative importance of input 
variables or factors (x1, x2,…,xk)  in determining the value of 
the output variable y. Assume a model y = f(x1, x2,…,xk) is 
composed of independent random variables x1, x2,…,xk. 
Moreover assume that the probability density function of x1, 
x2,…,xk is p1(x1), p2(x2),…,pk(xk). Given the above, the joint 
distribution of x1,x2,…,xk is  
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The first order sensitivity index is defined as:  
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Ishigami and Homma (1990) makes the calculation of the 
above using a single Monte Carlo loop. (Saltelli, Andres et al. 
1993) suggested the following Monte Carlo based procedure 
for calculation of global sensitivity indexes. 
Consider the two input sample matrices M1 and M2 as 
follows:  
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where ‘n’ is the sample size used for the Monte Carlo 
estimation.

  
E(y) can be calculated based on the values of y 

computed on matrices samples either from M1 or M2, 
whereas Uj can be calculated from values of y computed 
from sample from matrices M1 and Nj. 
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The approximation for Uj is as follows: 
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The computational cost associated with the 
calculation of the all first order sensitivity indexes is Sj is 
n*(k+1), where ‘n’ evaluations of ‘f’ are needed to calculate 
E(y) and n sets of ‘f’ for each first order sensitivity index.  
 

3. CONDITIONAL – GLOBAL SENSITIVITY ANALYSIS 

As explained in section 2.1, GSA  provides 
information about the contribution by individual factors to 
the overall uncertainty, where uncertainty is measured in 
terms of variance. However, there are situations where GSA  
is unable to distinguish among several uncertain factors in 
terms of their importance, i.e. two or more factors have equal 
or nearly equal global sensitivity index ( GSI ). In such a 
case, it is difficult to differentiate between the factors and 
decide in which factor to reduce uncertainty through 
experimentation. In order to accommodate such a situation, a 
new tool called cGSA  is presented, which may be able to 
differentiate between the factors having equal GSI  based on 
the situation at hand and the decision maker’s risk preference.  

3.1 Definition 

Conditional global sensitivity analysis is the 
measure of the contribution of variance by individual factors 
to the conditional objective function. Here conditional 
distribution refers to the part of the distribution of model 
output y above or below its mean ( )E y , for cGSAup or 
cGSAdown, respectively. The conditional (upside or downside) 
global sensitivity index ( upcGSI or downcGSI ) can be 
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calculated using (9) or (10) compared to GSI which is 
calculated using (4).   
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3.2 Algorithm 

Calculation of cGSIup/cGSIdown follows the same 
approach as GSI with the difference being that the random 
samples for the various factors conform to the conditionality 
constraint, i.e. the factors transformed by the model to the 
objective function value should lie above/below the mean of 
the model output E(y). So, in essence the problem is how to 
sample from the distribution of the factors so that the 
objective function values belong to the respective side of the 
distribution. This problem can be addressed by developing 
classification functions, which make sure that the model 
output will lie on the desired side of the mean of the model 
output distribution.  

It is important to note, that the sampling from the 
factor distributions introduces correlation between the 
factors. Global sensitivity analysis problem for correlated 
factor distributions has been addressed in the literature 
(McKay 1995), (Saltelli 2002),(Jacques, Lavergne et al. 
2006), (Xu and Gertner 2008). The generic idea is to follow 
the same approach for unconditional GSA  but introduce 
correlation between the parameters by re-ordering the 
samples from the factor distributions by following the 
ordering scheme introduced in (Iman and Conover 1982). 
Moreover, the measure of uncertainty contribution for each 
factor is considered the same as for the traditional GSA  
approach, i.e., V(E(Y|Xj)) (Saltelli 2002). 

The correlation introduced in cGSA cannot be 
calculated by using the re-ordering scheme of (Iman and 
Conover 1982), since the conditionality induces a 
relationship between the input factors that cannot be easily 
represented by either correlation or rank correlation. Hence in 
order to maintain the original distribution properties of the 
factors and account for the natural relationship introduced by 
the ‘conditionality’, we first sample the factors from their 
original distribution functions and then accept or reject the 
sample based on the result of the classification function 
separating the objective function values below and above the 
cut-off. (Note: this is very similar to the Acceptance-
Rejection algorithm). The importance of using the 
classification function instead of the model is that the model 
can be computationally intensive and a high rejection rate can 
significantly increase the computational load.  

Moreover, since the classification function would be 
an approximation, we would consider an enveloping 
classification function i.e. a classification function with high 
priority for acceptance of all possible valid combinations of 
factor values at the cost of relatively low priority for rejection 
of invalid combination of factor values. Though this would 
require additionally checking the validity of the sample point 
it would make the cGSI calculation more accurate. The 
complete procedure to calculate the cGSI given below 
assumes that GSI has been performed already and the user 
wants to perform cGSI for follow-up analysis:   

 
3.3. Theoretical Interpretation 

To understand the theoretical interpretation of the 
results of reducing uncertainty in the key cGSAup and 
cGSAdown uncertainty and its application consider the 
following model output y given by (11).   

1 2y x x= +                                         (11) 

1 beta(2,10)x =                   (12) 

2 beta(10,2)x =                   (13) 
The input uncertainties (x1 and x2) are given by (12) 

and (13). The distributions of x1 and x2 are positively and 
negatively skewed respectively as shown in figure 1. The 
distribution of model output y is shown in figure 2. Properties 
of the input uncertainties along with the model output are 
shown in Table 1.  

Table 1: Statistical properties of the input uncertainty and the 
model output 

 Mean Standard 
Deviation 

Skewness 

x1 0.167 0.104 0.92 

x2 0.833 0.104 -0.92 

Y 1.0 0.147 0 

  

Consider that the true decision criterion (14) is 
based on a cutoff, i.e. if the correct value of the model output 
lie above the cutoff the decision maker would keep the R&D 
alternative and if the model output lie below the cutoff the 
decision maker would reject the R&D alternative. For 
simplicity, assume the cutoff to be at the mean of the model 
output y (= 1). This means that the correct decision is to 
accept the technology 50% of the sampled cases and reject it 
in the other 50% of the cases. Consider the decision criterion 
under uncertainty (15) is driven by just the mean value, i.e., if 
the posterior mean ( ,

i
y posteriorμ , for realization i), after the 

uncertainty reduction, is below the cutoff, the alternative is 
rejected, and if the posterior mean ( ,

i
y posteriorμ ) is above the 
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cutoff, then the alternative is accepted. Furthermore, assume 
that if the decision maker tries to reduce uncertainty in any 
input factor, then the correct value of that factor would be 
known exactly, i.e. the posterior value of that input factor 
would be a point estimate, though the actual point estimate 
that results would be a sample from the prior distribution. 

Accept,
True Decision Reject,

No Decision, otherwise

if y cutoff
if y cutoff

>⎧ ⎫
⎪ ⎪= <⎨ ⎬
⎪ ⎪
⎩ ⎭

                    

(14) 

,

,

Accept,
Decision Criterion Reject,

No Decision, otherwise

i
y posterior
i
y posterior
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if cutoff

μ
μ

⎧ ⎫>
⎪ ⎪= <⎨ ⎬
⎪ ⎪
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 (15) 

0 0.2 0.4 0.6 0.8
0

500

1000

1500

2000

2500

3000

x1

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

x2

Fr
eq

ue
nc

y

 

Figure 1: (a) Frequency distribution of random variable 1x , 

(b) Frequency distribution of random variable 2x . 
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Figure 2: Frequency distribution of model output y. 

1 2ˆi i
posteriory x x= +                                           (16) 

, 1 2ˆi i
y posterior xμ μ= +                                           (17) 

( ), 1 2y posteriorE μ μ μ= +                                          (18) 

Since the two input uncertainties have similar 
distributions and the model structure is simply the addition of 
the two uncertainties, it is obvious that both the uncertainties 
will equally contribute to the uncertainty in the model output, 
which means they would have an equal GSI value. 

Additionally, x1 will be identified as the key unceratainty if  
cGSAup  is used, whereas x2 will be if cGSAdown is used. If 
the key cGSAup uncertainty is reduced, we will obtain a 
negatively skewed posterior distribution ( i

posteriory ) for 
model output y for any particular realization i, but the mean 
of these posterior distributions ( ,y posteriorμ ) obtained over all 
possible realizations would be positively distributed. To 
clarify, if uncertainty x1 is reduced then a posterior point 
estimate ( 1̂x ) of x1 is obtained, which is sampled from the 
positively skewed prior distribution of x1 (12). Then, as in 
(16), the shape of the posterior distribution is mainly driven 
by the input uncertainty x2, and hence i

posteriory is a 
negatively skewed distribution. The mean of the posterior 
distribution ( ,

i
y posteriorμ  ) for any realization i is given by 

(17), the distribution of which overall all possible realizations 
is positively skewed  as can be seen from (17). The expected 
value of the posterior mean of y (i.e. ,y posteriorμ ) is constant 

(18), where  1μ  and 2μ  are the mean of the prior 
distributions of x1 and x2, respectively.  

Similarly, if uncertainty in key cGSAdown uncertainty 
is reduced, we will obtain a positively skewed posterior 
distribution for model output y. The frequency distribution of 
the mean of the posterior model output for scenarios reducing 
uncertainty in key cGSAup and key cGSAdown uncertainty are 
shown in figure 3 and figure 4.  
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Figure 3: Frequency distribution of posterior mean of model 
output y when key cGSAup uncertainty (i.e. 1x ) is reduced 
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Figure 4: Frequency distribution of posterior mean of model 
output y when key cGSAdown uncertainty (i.e. 2x ) is reduced. 

In order to evaluate the pros and cons of the cGSAup 
and cGSAdown, false acceptance and false rejection is defined 
by (29) and (30) respectively, where N symbolizes the 
frequency. False acceptance is defined as the percentage of 
reject decisions which are falsely concluded to be acceptance 
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decision. Similarly false rejection is defined as the percentage 
of the correct acceptance decisions which are falsely rejected.  

False Acceptance 100 / (Correct Decision = Reject)
(Correct Decision = Reject,Predicted Decision = Accept)

N
N

=
•

(19) 

False Rejection 100 / (Correct Decision = Accept)
(Correct Decision = Accept,Predicted Decision = Reject)

N
N

=
•

  

(20) 

Consider the scenario, when cGSAup is used to 
determine which factor’s uncertainty should be reduced.  
Posterior mean that one obtains in this case would be 
positively skewed, as shown in Figure 3. For a positively 
skewed distribution the median lies below the mean, as 
indicated in the same figure. Hence, the mean-based decision 
criterion shown in (15) would lead to a higher percentage of 
rejection instances.  This is confirmed in the numerical 
results shown in Table 2. On the other hand, if cGSAdown is 
used instead, the resulting posterior mean would be 
negatively skewed as shown in Figure 4. Hence, it leads to a 
higher percentage of acceptance decisions, which is 
confirmed in the numerical results in Table 2.  

In addition, the results presented in Table 2 indicate 
that the reduction in uncertainty in the factor identified by 
cGSAup not only leads to a higher percentage of rejection 
decisions but also a higher rate of false rejection decisions. 
Again, the opposite is true if cGSAup is used instead. 

4. TEST CASE STUDIES 

To further demonstrate the utility of cGSA, we 
consider a generic model y composed of two skewed model 
inputs (x1 and x2) and  two symmetric distributed model 
inputs (h1 and h2) with parameters (y0, a, b, c, d, e, f). The 
values and prior distributions of the various underlying 
parameters ( 1 2 1 2, , ,T T θ θ ) of x1, x2, h1 and h2 are given by 
(29) – (33). The frequency distributions of the two model 
input factors x1 and x2 are shown in Figure 5 and those for 
model inputs h1 and h2 are shown in Figure 6. For reducing 
uncertainty of parameters 1θ and 2θ , experiments are 

conducted to collect measurements for 1g and 2g given by 
(26) and (27) respectively. These measurements are corrupted 
by Gaussian noises of (34) and (35) with their variances  
given by (48). 

0 1 2 1 2

1 2 1 2

. . . .
. . . .

y y a x b x c x x
d h e h f h h

= + + + +
+ +

                                    (21) 

( )2

1 1 1 1
Tx z Tθ= −                                                              (22) 

( )2

2 2 2 2
Tx z Tθ= −                                                             (23) 

1 1 1
Th z θ=                                                                 (24) 

2 2 2
Th z θ=                                                                           (25) 

1 1 1 1
Tg z θ ε= +                                                                   (26) 

2 2 2 2
Tg z θ ε= +                                                                 (27) 

[ ]1 2 1 1 1 Tz z= =                                                        (28) 

( )1 11 ,N θ θθ μ Σ∼                                                             (29) 

( )2 22 ,N θ θθ μ Σ∼                                                           (30) 

[ ]
1 2

5 10 5 T
θ θμ μ= = −                                            (31) 

1 2

0.25 0 0
0 0.5 0
0 0 0.25

θ θ

⎡ ⎤
⎢ ⎥Σ = Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

                                   (32) 

1 2 5T T= =                                                                        (33) 

( )2
1 10,Nε σ∼                                                                (34) 

( )2
2 20,Nε σ∼                                                           (35) 
2 2
1 2 0.05σ σ= =                        (36) 

 

Figure 5: Frequency distribution of input uncertainties (for 
both 1x and 2x ) 

 

Figure 6: Frequency distribution of input uncertainties (for 
both 1h and 2h )   

To evaluate the performance of the cGSA, both 
cGSIup (9) and cGSIdown (10) are calculated, along with it the 
rates of false acceptance (19) and false rejection (20). 
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Procedure to calculate the probabilities are explained as 
follows:  

Consider the scenario when cGSA (either cGSAup or 
cGSAdown) identifies x1 as the key uncertainty. This means 
more information should be obtained to reduce the 
uncertainty in x1.  In order to acquire more information, one 
conducts an experiment, with z1 and z2 obtained through D-
optimal design (denoted by exp

1η ) on the model g1 (see (26)), 

and after obtaining the experimental measurement ( 1,exp
ig ) of 

g1, the posterior 

distribution, ( )
1, 1,

1, ,i i
posterior posterior

i
posterior N

θ θ
θ μ Σ∼ , of 1θ is 

obtained. 
 
In order to systematically compare the cGSAup and 

cGSAdown, N ( = 8000) realizations of 1θ , 2θ , 1ε and 2ε  are 

generated and stored in 1
iθ , 2

iθ , 1
iε and 2

iε  (where i = 1, 2.., 

N). To generate the experimental realization 1,exp
ig , a 

sample 1
iθ from the prior distribution of 1θ  and a sample 

noise, 1
iε  from the noise distribution 1ε  are used. The 

posterior distribution for 1θ can be calculated using (37) and 
(38).  

( ) ( ) ( )( )
( ) ( ) ( )( )

11

1 1

1exp exp 2
1 1 1

1exp exp 2
1 1 1

/

/

posterior

T

T
g

θθ

θ θ

μ η η σ

η σ μ

−

−

= + Σ

• + Σ
                  (37) 

( ) ( ) ( )( )11

12 exp exp 2
1 1 1 1/posterior

T

θθ
σ η η σ

−
Σ = + Σ             (38) 

Now given this posterior distribution ( 1, posteriorθ ) 

of 1θ , the posterior distribution of 1x  is easily obtained using 
(22). Next using the posterior distribution of x1 and prior 
distribution of x2 the updated distribution of y is obtained. 
The required properties of the posterior distribution are 
calculated and the decision is predicted based on the  decision 
criterion of (15). 

 
In the above, one sample of experimental 

realization 1,exp
ig is considered and it leads to one updated 

distribution of y and then one decision (either selection or 
rejection) is made; this constitutes of one scenario. Similarly 
N (N = 8000) scenarios are generated and using the definition 
of false acceptance (19) and false rejection (20) the values are 
reported.  

 

Consider the model structure in (39). Given the 
input uncertainties the distribution of the model output y is 
symmetric. The GSA results show that both the uncertainties 
are equally important. Further cGSAup suggests that x1 is the 
main uncertainty while cGSAdown suggests that x2 is the key 
uncertainty. Results for two different cutoff values of 12 and 

88 are shown in Tables 4 and 5 respectively. Results support 
the argument that the uncertainty reduction in the key 
uncertainty indicated by cGSAup leads to a higher rate of 
false rejection and a lower rate of false acceptance, and vice 
versa. 

1 250y x x= + −                                              (51) 

Table 4:  Comparison of cGSAup and cGSAdown for the cutoff 
value of 12 
 

 x1 x2 
GSA  0.5 0.5 
cGSAup 0.88 0.00 
cGSAdown 0.01 0.76 
False Rejection (%) 0 0 
False Acceptance (%) 7 41 

 
Table 5:  Comparison of cGSAup and cGSAdown for the cutoff 
value of 88 
 

 x1 x2 
GSA  0.5 0.5 
cGSAup 0.88 0.00 
cGSAdown 0.01 0.76 
False Rejection (%) 41 7 
False Acceptance (%) 0 0 

We have conducted many more numerical studies with 
different parameter values and decision criterion but these are 
not presented here due to the space limitation. 
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