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Abstract: The purpose of model-based experimental design is to maximise the information gathered for 

quantitative model identification. Instead of the commonly used optimal experimental design, robust 

experimental design aims to address parametric uncertainties in the design process. In this paper, the 

Bayesian robust experimental design is investigated, where both a Monte Carlo sampling strategy and 

local sensitivity evaluation at each sampling point are employed to achieve the robust solution. The link 

between global sensitivity analysis (GSA) and the Bayesian robust experimental design is established. It 

is revealed that a lattice sampling based GSA strategy, the Morris method, can be explicitly interpreted as 

the Bayesian A-optimal design for the uniform hypercube type uncertainties. 
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1. INTRODUCTION 

Experimental design is an important part of any system 

identification processes, especially when the models are 

complex and the data are sparse and relatively noisy. The 

purpose of model-based experimental design is to maximise 

the information gathered for quantitative model identification 

whilst minimising the experimental efforts. This is of 

particular interests to modelling and parameter identification 

for complex biological systems, where data are usually 

obtained from expensive and time-consuming in vitro or in 

vivo experiments. A comprehensive review of model-based 

experimental design methods for biological and chemical 

modelling was recently given by Franceschini and 

Macchietto (2008). Experimental design problems in 

biochemical network modelling has been reported on design 

of initial molecular concentrations, external cellular signals, 

sampling time, measurement variable selection, etc. (Balsa-

Canto et al., 2008; Cho et al., 2003; Faller et al., 2003; 

Kutalik et al., 2004). 

Almost all these works are based on the standard optimal 

experimental design (OED) (Atkinson and Donev, 1992) that 

aims at maximizing a measure of the Fisher information 

matrix (FIM), which is functionally dependant on the 

nominal parameter values (Baltes et al., 1994; Körkel et al., 

2004). However, as the model parameters are only 

approximately estimated a prior, the OED results can be 

unreliable when only poorly estimated parameters are 

available. Sequential experimental design (Körkel et al., 

1999; Silvey, 1980) is a conventional way to deal with the 

parametric uncertainty, in which the experimental design and 

parameter estimation are implemented in an iterative manner. 

In practice, however, the cost of cellular experiments often 

limits the number of iterations. In the past decade, the 

maximin and Bayesian robust strategies have been introduced 

to dynamic model based experimental design (Han and 

Chaloner, 2004; Körkel et al., 2004; Rojas et al., 2007; Yue 

et al., 2008). In our recent work, we applied these two robust 

design approaches into the state measurement set selection 

problem for biological systems and compared them under 

different uncertainty levels (He et al., 2010). It shows that 

how to solve the NP-hard optimization problem in the robust 

experimental design, and compromise the robustness and 

computational efficiency are very challenging tasks. 

Model-based experimental design is formulated on measures 

of FIM, which is by definition dependant on the parametric 

sensitivity coefficients of local sensitivity analysis (LSA). 

The accurate calculation of parametric sensitivities is 

therefore crucial for performing an optimal experimental 

design, as well as evaluating/representing the parametric 

uncertainty for a robust experimental design. There is little 

work on the role of sensitivity calculation in experimental 

design, especially in robust design with model uncertainties. 

The computation of local sensitivity coefficients is relatively 

straightforward; however, the coefficient values are often 

affected by the magnitude of the states or parameters of the 

system. Also, the interactions between parameters are not 

considered in LSA. Several formulations of scaled and 

normalised sensitivities have been proposed (Saltelli et al., 

2000) to eliminate the scale effects. This will influence the 

outcome of experimental design. Thomaseth and Cobelli 

(1999) defined a new “generalised sensitivity” which takes 

account of the interactions between parameters.  

Compared with LSA, the global sensitivity analysis (GSA) 

has the advantages of incorporating large parametric 

variations and also the correlations between parameters. GSA 

has been used to pre-screen potential models and identify 

important model parameters, but never for the purpose of 

experimental design problems (Franceschini and Macchietto, 

2008). As we know, GSA represents ‘lumped’ sensitivity 

information over the parameter space rather than at a single 
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point as that in LSA. Therefore it is not used in formulating 

FIM for optimal experimental design. However, we argue 

that when considering large model uncertainties, GSA has the 

similar design principle as the Bayesian robust experimental 

design. In both cases, the domain of possible inputs 

(parameters) is defined first, and then the inputs are generated 

randomly either from a specified probability distribution or 

from a designed sampling strategy. Computations are 

performed using each set of inputs, and the results of the 

individual computations are aggregated into the final result. 

The aim of this work is to investigate the links between the 

lattice-sampling based GSA and the Bayesian robust 

experimental design, and therefore explore the potential of 

applying GSA in robust experimental design. In Section 2, 

the Bayesian robust experimental design approach is briefly 

introduced, which handles parametric uncertainty by 

integrating/averaging a prior distribution of parameters in the 

design process. In Section 3, the principle of lattice sampling 

GSA and its link with the Bayesian experimental design is 

investigated. To verify the main result, in Section 4, the 

Morris GSA is compared with several Bayesian robust 

designs for a measurement set selection problem of a signal 

pathway system model. Conclusions are given in Section 5.  

2. BAYESIAN ROBUST EXPERIMENTAL DESIGN 
For a single biochemical system with n reaction species 

and m reactions, denote [ ]1 2

T

n
X x x x= L  as the state 

vector and [ ]1 2

T

m
θ θ θ θ= L  as the vector of 

parameters. The system model can be represented as: 

0 0( , , ), ( )

( , , )

X f X t X t X

y g X t

θ

θ ξ

= =

= +

&

                     (1) 

where ( )f ⋅  is the nonlinear state transition function, 
0

X
 
is 

the initial states vector at 
0
t , ( )g ⋅  is the measurement 

function, yny∈R  is the measurement output vector with 

yn being the number of measurement output. ξ  is assumed 

to be a zero-mean, Gaussian additive noise vector. 

Parameter estimation for system (1) can usually be 

obtained from a least squares criterion.  

The FIM quantifies the information content of the 

experimental data. For a nonlinear dynamic system, the 

FIM is a nonlinear function of the estimated parameters 

under the assumption that the measurement noise is 

independent and identically distributed with a zero-mean 

Gaussian distribution. Assuming the number of 

identifiable parameters is 
I
n , computationally the FIM for 

experimental design can be expressed as: 

               1 1

FIM( , , ) ( , ) ( , )
ynN

T

i i l i l

l i

t S t S tθ ω ω θ θ
= =

= ∑∑                 (2) 

where S is the 
yn  by 

I
n  local sensitivity matrix of the 

measurable states with respect to the identifiable parameters. 

The (i,j)-th component in S is defined as ij i js x θ= ∂ ∂ . 
i
S  in 

(2) stands for the i-th row in S. N is the number of sampling 

points in time axis. Originally, 
1

[ ]
y

T

n
ω ω ω= L  in FIM is 

the weighting vector related to the variances of the 

observation errors (Fisher 1912). It can also be interpreted 

and used as experimental design variables (Boyd 2004) for 

design purpose. For example, in the measurement set 

selection problem, 
i

ω   is taken as the weight assigned to the 

i-th measurement. To simplify the representation, the time 

dimension (t) in the FIM is neglected in the following text.  

In Bayesian robust experimental design, the parametric 

uncertainty is represented with a prior distribution of the 

parameters, ( )P θ . The uncertainty effects are integrated or 

averaged in the admissible parameter space. Since the 

samples have not been observed yet before the experiments, a 

general Bayesian design criterion over the parameter space 

applies (Lindley, 1972). 

 
( ){ }

( )

ˆ arg max FIM( , )

arg max FIM( , ) ( ) dP

θω

ω

ω θ ω

θ ω θ θ

∈Θ∈Ω

Θ∈Ω

= Ε Φ

= Φ∫
 (3)

where {}Ε ⋅  denotes the expectation operator, Ω  is the design 

space for ω . Θ  represents the set of admissible parameters.

( )Φ ⋅  indicates the widely used “alphabet” experimental 

design criteria that are normally scalar functions of FIM, such 

as: A-optimal: trace(FIM) ; D-optimal: det(FIM) ; E-optimal: 

min
(FIM)λ , etc. Different Φ-optimality design criteria 

correspond to different utility functions employed in 

Bayesian decision theory (Chaloner and Verdinelli, 1995). 

For example, D-optimality corresponds to the expected gain 

in Shannon information, and A-optimality can be derived 

from a quadratic loss function. 

From the computational point of view, the integration 

operator in (3) can also be placed into the design criterion 

function Φ  to form an alternative representation for the 

Bayesian design, i.e. 

 max FIM( , ) ( )dP
ω

θ ω θ θ
∈Ω

Θ

 
Φ  

 
∫  (4)

where the FIM is integrated over a prior region in parameter 

space. Assume that ( )P θ  is a uniform distribution function, 

the FIM integration can be approximated as 

 

{ }

( ){ }( )

1

FIM( , ) FIM( , ) ( ) d

1
FIM ,

K
r

r

P

K

θ ω θ ω θ θ

θ ω
Θ

=

Ε =

≈

∫

∑
 (5)

where the superscript (r) indicates the r-th sampling set for θ  
and K is the number of samplings. (5) is known as the 

Bayesian information matrix (BIM) (Merlé and Mentré, 

1995) or expected FIM (Asprey and Macchietto, 2002). The 

integration of FIM can be calculated by an approximation as 

in (5), or by numerical quadrature, Laplace approximation or 

Monte Carlo integration within the uncertainty region. This is 

also named as Pseudo Φ-optimal Bayesian experimental 

design in Atkinson’s terminology (Atkinson and Donev, 
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1992). Taking the measurement set selection problem as an 

example, the BIM can be expressed explicitly as: 

 

( )

( ) ( )

( )

1 1 1

( ) ( )

1 1 1

1
BIM( , ) FIM( , , )

1
, ,

y

y

nK N
r

l i

r l i
nK N

T r r

i i l i l

r l i

t
K

S t S t
K

θ ω θ ω

ω θ θ

= = =

= = =

=

=

∑∑∑

∑∑∑
 (6)

Accordingly, a Bayesian E-optimal design can be formed as a 

semidefinite programming (SDP) problem based on BIM: 

 
            

( ) ( )

1 1 1

1

max

1
. ( , ) ( , )

1, 0

y

I

y

nK N
T r r

i i l i l n

r l i

n

i i

i

v

s t S t S t v
K

ω

ω θ θ

ω ω

= = =

=

≥

= ≥

∑∑∑

∑

I  
(7)

In
I  is an nI-dimension identity matrix. 

3. BAYESIAN ROBUST EXPERIMENTAL DESIGN AND 

GLOBAL SENSITIVITY ANALYSIS 

It can be seen from Section 2 that both the Monte Carlo 

sampling and the local sensitivity evaluations at each 

sampling point are applied in the Bayesian experimental 

design. On the other hand, GSA is meant to consider the 

interactive variations between all parameters in a large 

uncertainty domain, where the design result is also produced 

by aggregating individual local results. It would be 

interesting to investigate the links between the sampling-

based Bayesian experimental design with the lattice-sampling 

based GSA approaches. 

3.1  Lattice Prior Sampling 

Prior elicitation is an important step in Bayesian experimental 

design and performance analysis afterwards. Prior 

information can be obtained from earlier experiments or from 

conjectures that motivate the investigation (Clyde, 2001). 

However, for biochemical systems, prior distribution on 

kinetic parameters may not always be easily available. 

Instead, it is more likely to be attained from previous 

parameter estimations or using historical data from previous 

experiments to construct a hierarchical normal linear model 

(Lindley and Smith, 1972). In simulation studies, the prior 

distribution ( )P θ  is often obtained via Monte-Carlo 

sampling in the most likely parametric uncertainty region. 

Prior sampling distribution can be uniform across a 

hypercube or Gaussian across a hyper-ellipse in parameter 

space. The latter is generally assumed in the Bayesian design 

literature (Chaloner and Verdinelli, 1995; Clyde, 2001). The 

common sampling strategy is the random uniform sampling, 

or more efficient orthogonal sampling, such as Latin square 

sampling (Iman et al., 1981) and Taguchi orthogonal arrays 

(Taguchi and Yokoyama, 1993). In this work, a lattice 

sampling scheme used in the Morris global sensitivity 

analysis is analyzed for the purpose of studying the Bayesian 

experimental design. 

Consider the model (1) with m parameters. Without loss of 

generality, a simple lattice sampling scheme can be assumed 

that each jθ  is scaled in the interval ,lb ub
j jθ θ 

   with lb
jθ  

and ub
jθ  being the lower and upper bounds. Denote 

ub lb
j j jµ θ θ= −  as the length of the interval. Within this 

interval, p discrete values are uniformly taken as 

{ }, ( 1) , , ( 2) ( 1),lb lb lb ub
j j j j j jp p pθ θ µ θ µ θ+ − + − −L . The 

parametric sample space, Θ , is then an m-dimensional, p-

level grid. A random selection of a value for each jθ (

1, ,j m= L ) from the grid forms a random set (
( )rθ ) in the 

parameter space, and the local sensitivity is calculated at each
( )rθ . This calculation is repeated K times. Considering ( )

j
P θ  

as a uniform distribution for 
j

θ , the corresponding Bayesian 

information matrix is formulated as in (6). 

Lattice sampling is efficient and easy to implement for the 

Bayesian prior approximation. Its efficiency can be further 

improved when combined with orthogonal sampling 

strategies (e.g. Latin hypercube). However, the p-level grid 

sampling strategy is usually only applicable for the uniform 

hypercube type uncertainties, whereas asymptotic Gaussian 

distributions are more widely used in Bayesian design for 

nonlinear models. In this context, the uniform lattice 

sampling scheme sometimes provides conservative design 

results.  

3.2  Bayesian Experimental Design and Morris GSA  

Similar to the Bayesian experimental design, some GSA 

approaches are also based on the lattice sampling scheme. 

This is exactly the sampling strategy used in the so-called 

Morris GSA method (Morris, 1991). The Morris method is a 

screening GSA method. It is based on the estimation of mean 

and variance of the functional parametric sensitivity, termed 

as elementary effect (EE), through a pre-defined random 

sampling within a hypercube in the parameter space. 

Based on the original Morris design, we introduced a few 

changes in the formulation to adapt to the problem under 

discussion. Similar to the model formulation in Section 3.1, 

each parameter, jθ , is scaled in the interval ,lb ub
j jθ θ 

  and 

may take a value from the p discrete points within this 

interval. The whole parameter space of interest is an m-

dimensional, p-level grid. At each sampling set in the 

parameter space, ( )rθ ∈Θ , the elementary effect of the i-th 

state with respect to the j-th
 
parameter is defined as: 

( )
,

2
( ) ( )

( )
( , ) ( , )

,
i j

r r

i j j ir

j

x t e x t
F t

θ δ θ
θ

δ

 + −
=   

 
 (8)

For the j-th parameter, ( )ub lb
j j jδ θ θ= − ∆ , ∆  is a 

predetermined multiple of 1 ( 1)p −  and is taken to be 

[ ]/ 2( 1)p p −  in this work. je  is a standard Cartesian basis 
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vector with the j-th component being 1 and all the others 

zeros. In all the sampling cases, there is ub
j j jθ θ δ≤ − . 

Producing one value for the elementary effect, ( )
,

( ),
i j

rF t θ , 

requires a random selection of m values for all the m 

parameters from the grid and the evaluation of ix  twice, one 

at the selected point 
( )rθ , the other at the point by increasing 

the j-th parameter in 
( )rθ  with jδ . The calculation is 

repeated K times and the mean value of ( )
,

( ),
i j

rF t θ  is taken 

as follows: 

( )
,

( )

1 1

1
,

i j

K N
r

ij

r t

s F t
N K

θ
= =

=
⋅ ∑∑%  (9)

The Morris global sensitivity indices are obtained for each 

variable with respect to each individual parameter in the 

model. The combination of all these sensitivity measures 

corresponds to the sum of the diagonal elements of the FIM 

or equivalently its trace. As we know the A-optimal 

experimental design optimizes the trace of FIM. In the 

following, the equivalence between the Morris global 

sensitivity measure and a Bayesian A-optimal information 

measure is established. This understanding is useful for 

experimental design in that it explains what information is 

contained in the global sensitivity measure and it also 

provides a computationally simple way to evaluate the 

Bayesian design using a lattice-based sampling scheme. 

Theorem  

The Morris global sensitivity measure is equivalent to a 

(sparse) Bayesian A-optimal information measure, where the 

prior probability is a function of both the sample space lattice 

partition and the form of the state functions. 

Proof  

This result is established firstly by considering what the 

elementary effects represent in Morris GSA, secondly by 

deriving the prior parameter distribution, and finally by 

analyzing the random averaging or expectation operation 

over the parameter space. Consider a single elementary effect 

as defined in (8). Giving that the states are continuous 

functions of the parameters, there exists at least one 

parameter 
( )*rθ  such that  

( ) ( ) ( )( ) ( ) ( )*, , ,r r r

i j j i i

j j

x t e x t x tθ δ θ θ

δ θ

+ − ∂
=

∂
 (10)

where ( )* ( ) ( ),r r r

j j
eθ θ θ δ ∈ +  . This is directly inferred from 

the intermediate value theorem. This means for any of the 

random sampling points on the parameter lattice, there exists 

a nearby point, which lies on the lattice for all but the j-th 

coordinate, such that the squared gradient at this point is 

equal to the elementary effect. As the number of all possible 

lattice points is finite, there exists a corresponding finite set 

of points, at which the equivalent squared gradient can be 

evaluated. This set must lie strictly within Θ . Assuming all 

the sampling sets have the equal opportunities to be taken, the 

parameter distribution can be represented by the probability 

distribution function: 

 ( )( )*

1

1
( )

K
r

r

P
K

θ δ θ θ
=

= −∑                       (11) 

where δ  is the impulse response function. Taking an 

equivalent random sampling scheme as used in the Morris 

global sensitivity measure, the overall global sensitivity 

measure can be expressed as 

 

( ) ( )

( )

( ) ( )

( ) ( )( ) ( )

( )

2
( ) ( )

, ,

2

( )*
, ,

( )*2 ( )*

, , 1

( )*( ) ( )

1

1

, ,

,

1
, d

1
tr d

tr ( ) (

r r
i j j i

j i t
j

ri
j i t j

j

K
rr

ij j

i j t r

K
rT r r

r

x t e x t

x
t

s t
K

S S
K

P

θ

θ

θ δ θ

δ

θ
θ

θ δ θ θ θ

θ θ δ θ θ θ

θ θ

=Θ

=Θ

−

   + −   Ε Ε          

   ∂  = Ε Ε     ∂     

≈ −

= −

= Σ

∑∑∫

∑∫
)dθ

Θ∫

    (12) 

It is shown in (12) that the aggregated elementary effects in 

Morris GSA is equivalent to the Bayesian A-optimal design 

with a uniform distribution ( )P θ  on θ .                           □ 

There are several issues worth being discussed on the 

equivalence of Morris GSA with Bayesian A-optimal design. 

(i) While the Morris method considers a uniform partition of 

the parameter space using the lattice, the induced prior 

probability function ( )P θ  is unlikely to be uniform because 

of the non-linear dependence of the states on the parameters. 

This results in the equivalent gradient sample points, ( )*rθ , 

occurring at irregular spaces between the lattice nodes. (ii) 

Since the gradient is squared in (8), it is difficult to apply this 

simple scheme to a more general D- or E-optimal design 

criterion, where the covariance terms in FIM would have to 

be estimated. To consider the covariance terms, the square 

operation in (8) should be removed. (iii) A sufficiently large 

number of lattice samples need to be generated for 

calculation. The global sensitivity measure is evaluated at 

each sampling point for each state, time, and parameter, in 

order to mimic a similar averaging effect in constructing the 

Bayesian information matrix. 

4. CASE STUDY ON MEASUREMENT SELECTION OF 

A SIGNAL PATHWAY MODEL 

In this section, different Bayesian Φ-optimal designs and the 

Morris GSA are compared for a measurement set selection 

problem. The simulation study is designed to verify the link 

between the Morris GSA and the Bayesian A-optimal design. 

We consider a simplified IκBα-NF-κB signal transduction 

pathway network as the model for simulation. The model 

details can be found in the appendix. In the simulation study, 

the following 5 parameters, 5 12 13 16 18, , , ,θ θ θ θ θ , are taken for 
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parameter estimation since they are regarded as the important 

parameters from our previous work on sensitivity analysis. 

The objective of experimental design is to select the most 

informative state measurements from all the 10 states so as to 

best facilitate the estimation of these 5 parameters. To 

address the model uncertainties, a 50% uniform uncertainty 

around the nominal values is considered for the five 

parameters to be estimated. A random uniform sampling is 

used in the Bayesian design and a lattice sampling is 

employed in Morris GSA design. The state rankings 

calculated by different approaches are compared in Table I, 

and the corresponding 95% confidence ellipses are illustrated 

with two parameters ( 5θ  and 12θ ) in Fig. 1. 

 
(a) p=5 in Morris GSA design 

 
 

(b) p=10 in Morris GSA design 

Fig. 1 The 95% confidence ellipse for Bayesian A-, D-, E-

designs and Morris GSA based design using two parameters 

for illustration 

Table I. State measurement design results for different 

methods: (1) Bayesian A-optimal, (2) Bayesian D-optimal, 

(3) Bayesian E-optimal, (4) Morris GSA design 

Methods Ranking of state measurement weights  

(descending order) 

(1) 8     5     7     1     10     4     9     3     2     6 

(2) 1     5     8     4     10     7     3     9     2     6 

(3) 5     8     7     10     1     4     3     2     9     6 

(4) 5     8     1     7      4    10     9     3     2     6 

Comparing the top four selected state variables of different 

designs in Table I, it can be observed that the Morris GSA 

design selects the same top four state measurements as the 

Bayesian A-optimal design, although in a slightly different 

order, and three out of four of the Morris design are the same 

as those of the Bayesian D- and E-optimal designs. 

Comparison of the 95% confidence ellipse in Fig. 1 also 

demonstrates the closeness of the Bayesian A-optimal design 

with the Morris GSA design. This result verifies the theorem 

in Section 3.2 and highlights the link between the GSA 

design and the Bayesian experimental design. The slight 

difference between the Morris design and the Bayesian A-

optimal design is caused by numerical computation since it is 

impractical to take p to be very large. A lattice sampling 

without a sufficiently large number of partitions may result in 

a poor representation of the uncertainty region. As shown in 

Fig.1, the larger the lattice partition number is, the closer the 

result is to the sampling-based Bayesian experimental design. 

5. CONCLUSIONS 

Previous works on experimental design are mainly related to 

local sensitivity analysis via the formulation of FIM in the 

optimization. The possible contribution from GSA has rarely 

been discussed before. In this work, the explicit link between 

a lattice sampling based GSA, the Morris method, and the 

Bayesian A-optimal design is established based on a prior 

distribution information on the model uncertainties. This link 

suggests the potential use of GSA in improving robust 

experimental design with lattice sampling strategies. 
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APPENDIX SIMULATION MODEL 

This is a simplified IκBα-NF-κB computational model 

developed based on Hoffmann’s model (Hoffmann et al., 

2002) with IκBβ and IκBε knock out. Due to page limitation, 

the reactions are not listed here. Interested readers can check 

details from the original modelling paper. 

Table A1. State definitions 

Species States Species States 

IκBα x1 IKK x6 

NF-κB x2 NF-κBn  x7 

IκBα-NF-κB
 

x3
 

IκBαn  x8 

IKKIκBα x4 IκBαn-NF-κBn  x9 

IKK-IκBα-NF-κB x5 IκBα−t x10 

The model is described by a set of ODEs. 

1 17 18 1 2 3 15 4 19 8 16 10 1 1 2

14 1 6

2 7 2 2 6 3 4 5 5 8 7 1 1 2 3 2 4

3 2 6 3 21 5 22 9 1 1 2 20 3 6

4 15 24 4 4 5 14 1 6 3 2 4

5 4 5 21 5

( )

( ) ( )

( )

( )

( )

x x x x x x x x

x x

x x x x x x x x x

x x x x x x x x

x x x x x x x

x x

θ θ θ θ θ θ θ

θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ

= − + + + + + −

−

= − + + + + + − −

= − + + + + −

= − + + + −

= − + + +

&

&

&

&

&
3 2 4 20 3 6

6 15 24 4 5 21 5 23 6 14 1 6 20 3 6

7 7 2 8 7 10 9 9 7 8

8 18 1 19 8 10 9 9 7 8

9 10 22 9 9 7 8

2

10 11 13 10 12 7

( ) ( )

( )

x x x x

x x x x x x x x

x x x x x x

x x x x x x

x x x x

x S x x

θ

θ θ θ θ θ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ θ

+

= + + + − − −

= − + −

= − + −

= − + +

= − +

&

&

&

&

&
 

Parameter values are listed in Table A2 with units of µM in 

concentration and minute in time. 

Table A2 Parameter values in the IκBα-NF-κB model 

1θ  30 
9θ
 

30 
17θ

 
0.00678 

2θ
 

6e-5 
10θ

 
6e-5 

18θ
 

0.018 

3θ
 

30 
11θ

 
9.24e-5 

19θ
 

0.012 

4θ
 

6e-5 
12θ

 
0.99 

20θ
 

11.1 

5θ
 

1.221 
13θ

 
0.0168 

21θ
 

0.075 

6θ
 

6e-5 
14θ

 
1.35 

22θ
 

0.828 

7θ
 

5.4 
15θ

 
0.075 

23θ
 

0.0072 

8θ
 

0.0048 
16θ

 
0.2448 

24θ
 

0.2442 
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