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Abstract: Model-based design of experiments (MBDoE) techniques are a useful tool to maximise the 
information content of experimental trials when the purpose is identifying the set of parameters of a 
deterministic model in a statistically sound way. When samples are collected in a discrete way, the 
formulation of the optimal design problem is based on the maximisation of the expected information, 
usually calculated from discrete forms of the Fisher information matrix. However, if a continuous 
measurement system is available, information can be acquired gradually in a continuous way, and a new 
MBDoE approach is required to take into account the specificity of the measurement system. In this 
paper a novel design criterion is formulated by optimising a continuous measurement of the Fisher 
information matrix, with the purpose of reaching a statistically satisfactory estimation of model 
parameters in the easiest and quickest way. The benefits of the proposed strategy are discussed through a 
simulated case study, where the effectiveness of the design is assessed by comparison to a standard 
MBDoE approach. 

Keywords: model based design of experiments, parameter estimation, model identification, continuous 
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1. INTRODUCTION 

Dynamic deterministic models are used to describe physical 
systems through the statement of laws and correlations in the 
form of a system of differential and algebraic equations 
(DAEs). Once a dynamic model structure is found adequate 
to represent a physical system, a series of identification 
experiments need to be carried out to estimate the set of 
parameters of the model in the most precise and accurate 
way. The identification procedure can be costly and very time 
consuming because the system may exhibit identifiability 
issues, or there may be a mismatch between the model and 
the actual system to be represented, or data may be difficult 
and expensive to obtain. Model-based design of experiments 
(MBDoE) techniques (Mehra, 1974; Titterington, 1980; 
Pukelsheim, 1993) represent a valuable and consolidated tool 
for the rapid assessment and development of dynamic 
deterministic models, allowing for the maximisation of the 
information content of the experimental trials in order to 
assist the parameter identification task. MBDoE techniques 
are usually carried out in a sequential way, and three 
fundamental steps are required to determine the model 
parameters: i) the design of the experiment, usually carried 
out by maximising a measurement function of the expected 
information (i.e. the information as predicted by the model); 
ii) the execution of the experiment according to the planned 
experimental conditions; iii) the estimation of the model 
parameters, which provides the statistical assessment of the 
estimate and where the actual information (i.e. the 
information as provided by the experiment in the form of 

collected data) is exploited. This procedure, leading to a 
progressive reduction of the uncertainty region of the model 
parameters, can be iterated until a satisfactory parameter 
estimation is achieved. The effectiveness of model-based 
design procedures has been demonstrated in several 
applications (Franceschini and Macchietto, 2008).  
In practical experimental environments information is usually 
acquired from the experiment through discrete collection 
(sampling) of data. Consequently, when planning an 
experiment with an MBDoE technique, the expected 
information being maximised is expressed through a discrete 
form of the Fisher information matrix (Zullo, 1991), which 
allows for the optimal allocation of sampling points. 
However, the rate at which information is acquired depends 
on the measurement equipment and on the capability to 
represent and exploit the system dynamics in terms of 
experimental data. The effect of sampling rate and 
measurement precision on information evaluation and design 
effectiveness has been extensively studied in the literature 
(Emery et al., 2002). Moreover, recently the management of 
the information dynamics has been discussed to assess how it 
can influence the duration and the effectiveness of an 
identification experiment planned by MBDoE techniques 
(Galvanin et al., 2009a).  
The rate of information acquisition may be limited by the 
experimental budget (e.g., number and duration of 
experiments, number and type of measurements) and/or by 
the specific choices and possibilities set by the experimenter. 
As a result, the experiment design activity usually takes into 
account the limitations on laboratory facilities and is 
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managed accordingly. When monitoring a process, a number 
of system outputs (e.g. temperatures and pressures) are 
measured (in practice) in a continuous way, while other 
responses, typically concentration measurements, can only be 
acquired by discrete sampling at a significantly reduced 
sampling frequency. However, recent advances in sensors 
technology allow for the development of continuous 
monitoring systems particularly suitable for concentration 
measurements. These measurement systems become 
particularly suitable for monitoring systems where complex 
dynamics and poor observability can make both the model 
identification and the system control procedures very 
complicated tasks. For instance, continuous measurement 
systems have been developed for monitoring concentrations 
in biological processes adopting near-infrared spectroscopy 
(Tosi et al., 2008) or on line respirometry techniques (Dias et 
al., 2009). 
When performing an MBDoE activity, the mathematical 
formulation of the expected information being maximised 
should take into account the specificity of the given sampling 
system. If the samples are collected very frequently, the 
measure of the actual information gained from the 
experiment can be approximated by a continuous profile over 
the experimental horizon. Following this premise, a novel 
design criterion involving a dynamic MBDoE (DMBDoE) 
approach is presented and discussed in this paper. The 
proposed design technique is suitable for systems in which 
continuous (or highly frequent) measurements are available. 
The optimal design problem is formulated by optimising a 
continuous dynamic measurement function of the Fisher 
information matrix with the purpose of reaching a statistically 
satisfactory estimation of model parameters in the easiest and 
quickest way. The applicability to nonlinear dynamic systems 
and the effectiveness of the proposed DMBDoE approach are 
illustrated via a simulated case study. 
 

2. THE METHODOLOGY 

Let us consider a process described by the set of DAEs of the 
form: 
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with the set of initial conditions x(0) = x0, where x(t) is the 
Nx-dimensional vector of time-dependent state variables, u(t) 
and w are the time-dependent and time-invariant control 
variables (of dimensions Nu and Nw), respectively, θ is the 
Nθ-dimensional set of unknown model parameters to be 
estimated, and t is time. The symbol ^ is used to indicate the 
estimate of a variable (or of a set of variables): thus, y(t) is 
the vector of measured values of the outputs, while ŷ is the 
vector of the corresponding values estimated by the model. 
Model-based experiment design procedures aim at decreasing 
the model parameter uncertainty region predicted by model 
(1) as the solution of the optimisation problem 
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by acting on the experiment design vector φ: 

 Tspt τ,,),(,0 twuy                                                         (3)       

which includes the Ny-dimensional set of initial conditions y0 

on the measured variables, the duration of the experiment τ, 
the continuously manipulated inputs u(t), usually 
approximated by a discrete (piecewise constant or piecewise 
linear) function, and the set of time invariant manipulated 
inputs w. The set of time instants at which the output 
variables are sampled is also a design variable, and is 
expressed through the nsp-dimensional vector tsp of sampling 
times. The experiment is designed so as to minimise a 
measurement function ψ of Vθ (the variance-covariance 
matrix of model parameters) or, equivalently, to maximise a 
measurement function ψ of Hθ (the dynamic information 
matrix). The particular form of the measurement function 
represents the chosen design criterion in order to maximise 
the expected information content of the experiment as 
predicted by the model. The most common design criteria are 
the so-called alphabetical ones, i.e. A-, D-, E-optimal criteria 
(Pukelsheim, 1993), or they are based on singular values 
decomposition (Galvanin et al., 2007; Zhang et al., 2009). 
The dynamic information matrix is usually expressed by the 
discrete dynamic form of the Fisher information matrix as 
proposed by Zullo (1991): 
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In (4) sij is the ij-th element of the Ny×Ny inverse matrix of 
measurements error, Mk represents the amount of 
information that can be recovered from the k-t sample 
and 0

H  is the prior dynamic information matrix, taking into 

account the preliminary statistical information about the 
parametric system before each trial is carried out. 
Considering an A-optimal design criterion (i.e. focusing on 
the trace tr of the dynamic information matrix), an upper 
limit curve on the expected information (Fig. 1) can be 
characterized as the number of samples b

h 

ecomes very large: 
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Fig. 1.  Effect of the number of samples on the evaluation of 
the expected information. 
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where Δt is the sampling interval, and here is assumed to be 
fixed (and thus not optimised by design). In (5) K is a 
constant term quantifying the prior information, while the 
trace of M(t) allows for the dynamic evaluation of the 
expected information. This new metric of the expected 
information is suitable for systems where the measurements 
can be deemed continuous (i.e., where information can be 
collected at a frequency that is much higher than the 
characteristic frequency of the process). A novel design 
criterion for the dynamic model based design of experiments 
can thus be introduced: 
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Basically, the DMBDoE criterion aims at maximising the 
area underneath the curve of the dynamic expected 
information, while a standard A-optimal MBDoE criterion 
aims at maximising the sum of the information content of 
each single sampling point (Fig. 2). 
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Figure 2. Dynamic evaluation of expected information. 

The benefit of adopting (6) is that the design objective 
function becomes inherently dynamic as is the experiment 
itself, thus allowing for a continuous exploitation of the 
available information (from the very beginning of the 
experiment). This design criterion can be usefully exploited 
also in a sequential MBDoE framework or by adopting a 
redesign strategy (Galvanin et al., 2009b) within a proper 
time window. After maximising the expected information 
with (2) or (6) by acting on the components of the design 
vector φ, the experiment is performed and the actual 
information is exploited by carrying out a parameter 
estimation on the collected data. A new information profile 
will be generated (the “actual information” profile), usually 
different from the expected profile maximised by design. If 
the model is a reliable representation of the process, the 
mismatch between the expected and the actual information 

can be exclusively attributed to the parametric mismatch 
between the model and the real system. 

3. CASE STUDY 

3.1 Bioreactor model 

The methodology discussed in the previous section is applied 
to a simulated biomass fermentation process that appeared in 
several papers on the subject (Espie and Macchietto, 1989; 
Asprey and Macchietto, 2002). Assuming Monod-type 
kinetics for biomass growth and substrate consumption, the 
system is described by the following set of DAEs: 
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where x1 is the biomass concentration (g/L), x2 is the 
substrate concentration (g/L), u1 is the dilution factor (h-1), 
and u2 is the substrate concentration in the feed (g/L). The 
experimental conditions that characterise an experiment are 
the dilution factor u1 (range 0.05-0.20 h-1) and the substrate 
concentration in the feed u2 (range 5-35 g/L). These 
conditions are approximated by piecewise constant profiles 
over 8 switching intervals (the duration of each interval is 
allowed to be between 1 and 20 h). The initial biomass and 
substrate concentration x1(0) and x2(0) are set to 1.4 g/L and 
0 g/L, respectively. It is assumed that both x1 and x2 can be 
measured during the experiment. The final objective is to 
design a single experiment (lasting τ = 40 h) to yield the best 
possible information for the estimation of the four parameters 
 i.   

3.2 Experiment design configurations 

Two experiment design configurations are considered and 
compared in this study:                                                       
1. MBDoE: a standard E-optimal designed experiment with 

(2) as the objective function; the design also optimises 
the allocation in time of nsp = 10 samples (the elapsed 
time between any two sampling points is allowed to be 
between 1 and 20 h); 

2. DMBDoE: a dynamic experiment design is performed by 
adopting (6) as the objective function; it is supposed that 
the measurements are available frequently (every 10 
min). 

Synthetic “experimental” data are obtained by simulation 
with  = [0.310, 0.180, 0.550, 0.050]T as the true parameters 
and adding Gaussian noise with a constant relative variance 
of 0.03 (case A, “moderate noise level”) and 0.20 (case B, 
“high noise level”) to the output measurement. The initial 
guess for the model parameters’ values is set to 0 = [1.000,  
1.000, 1.000, 1.000]T. Since θ is obviously unknown in 
practice, results of the parameter estimation are given in 
terms of the a-posteriori statistics obtained after performing a 
maximum likelihood parameter estimation. The quality of the 
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final estimates is assessed by observing for each parameter 
the interval of estimation confidence and the t-value statistic 
obtained after the optimally designed experiments have been 
executed and the model parameters re-estimated with the new 
data. For a reliable parameter estimation the t-value must be 
greater than a computed reference value derived from a 
Student t-distribution (t-test) with nsp–Nθ degrees of freedom.  
Although it has been shown in literature that an E-criterion 
can be extremely inefficient when dealing with the 
identification of linear regression models (Dette, 1997), this 
criterion was used in the standard MBDoE because it was 
proven as the most effective design approach for this specific 
nonlinear case study (Asprey and Macchietto, 2000). Even if 
not shown here for the sake of brevity, it has nonetheless 
been verified that an A-optimal design criterion would 
provide very similar optimal excitation patterns. 

3.2 Case A: moderate noise level 

When measurements are available with moderate noise, both 
MBDoE approaches allow reaching a statistically satisfactory 
parameter estimation (Table 1), but DMBDoE ensures a 
dramatically better confidence on the final estimate, thanks to 
the higher rate of information acquisition.  

Table 1. Case A: comparison of parameter estimations for 
different design configurations (the reference t-value is 1.74 

for MBDoE and 1.65 for DMBDoE estimation). 
 

 MBDoE-A DMBDoE-A 

Estimate 
[0.3064 0.2015 0.4955 

0.0448]T 
[0.3154 0.1762 
0.5792 0.0520]T 

Conf. Interval 
(95%) 

[±0.0118  ±0.0540 
±0.1250 ±0.0134] 

[±0.0010 ±0.0014 
±0.0048 ±0.0005] 

t-values 
[26.04  3.73 3.96 

3.350] 
[297.20  125.10 
119.80 103.50] 

 
Interestingly (Fig 3. and Fig. 4), in a DMBDoE approach the 
design is such that the system is excited at the very beginning 
of the experiment in order to increase the information content 
of the samples being acquired as soon as the experiment 
starts. On the contrary, the excitation provided by MBDoE is 
mainly concentrated in the second half of the trial. This clear 
difference on the excitation policy has a significant effect on 
the distribution of information along the experimental 
horizon. In fact, the dynamics of the actual information is 
completely different for the two design configurations (Fig. 
5). A minimum required information limit based on the A-
optimal design criterion can be defined by considering a 
mean standard deviation of 10% on the final estimate of 
model parameters.  
It can be noticed that the second half of the experiment as 
planned by DMBDoE does not deliver an appreciable 
contribution to the overall information, which is concentrated 
at the very beginning of the trial. A maximum on the actual 
information is reached around t = 11 h, and subsequently the 
increment on information is negligible. As a result, the 
experiment planned by DMBDoE could be stopped well 
before t = τ as a statistically satisfactory parameter estimation 
would be reached much earlier.  
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Figure 3. Case A: biomass and substrate concentration 
profiles as predicted by the model after the parameter 
identification of the DMBDoE planned experiment; 
biomass and substrate concentration measurements are 
indicated by diamonds.   
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Figure 4. Case A: profiles of the manipulated inputs as 
optimised by the two different design strategies.  
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Figure 5. Case A: profiles of actual information for a standard 
MBDoE and for DMBDoE as given by the summation 
term of (5); the dotted line represents the A-optimal 
information limit for a 10% deviation on the final 
estimate.    
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On the other hand, the experiment planned by a standard 
MBDoE technique requires approximately the full length of 
the experiment for a statistically sound parameter estimation. 
These results clearly show how a DMBDoE approach can be 
usefully adopted to shorten the experiment duration if a 
measurement system capable of providing precise and 
frequent measurements is available. 

3.3 Case B: high noise level 

When a high noise level is present in the measurements, a 
standard MBDoE approach is not sufficient to provide a 
statistically sound parameter estimation (Table 2) with a 
single experiment.  

Table 2. Case B: comparison of parameter estimations for 
different design configurations. Superscript * indicates t-

values failing the test (reference t-value is 1.74 for MBDoE 
and 1.65 for DMBDoE estimation). 

 

 MBDoE-B DMBDoE-B 

Estimate 
[0.3047 0.1970 0.5099 

0.0436]T 
[0.3040 0.1757 
0.5327 0.0491]T 

Conf. Interval 
(95%) 

[±0.2000 ±0.3369 
±0.8502 ±0.1903] 

[±0.0292 ±0.0137 
±0.0745 ±0.0087] 

t-values 
[1.52*  0.58* 0.59* 

0.23*] 
[10.40  12.85 7.15 

5.62] 
 

On the contrary, the DMBDoE strategy appears to be less 
sensitive to the level of the measurement noise and provides a 
statistically satisfactory estimation for all parameters after a 
single experiment. The level of excitation provided by 
MBDoE is significantly higher than the one provided by 
DMBDoE (Fig. 6 and Fig. 7), but it is still concentrated (as in 
case A) in the second part of the experiment (after 10 h).  
Analysing the actual information profiles (Fig. 8) it can be 
noticed how the information acquired through discrete 
samples is not sufficient to guarantee a statistically sound 
parameter estimation. Conversely, when a dynamic design is 
carried out, the information exploited at the very beginning of 
the experiment is sufficient to reach a statistically sound 
parameter estimation in the first half of the experiment. 
Additionally, it can be observed that even if measurements 
are noisy, the new approach (DMBDoE-B, Table 2) can 
provide a sounder parameter estimation of θ2, θ3  and θ4 than 
the one provided by a standard MBDoE with clean 
measurements (MBDoE-A, Table 1). Thus, particular 
attention should be made by the experimenter on choosing 
the proper measurement system: a continuous measurement 
system, even if providing noisy data, might be more suitable 
for model development and validation than a more precise 
but discrete approach.         

3.4 Additional discussion 

As already mentioned, from the analysis of the dynamics of 
the actual information when a DMBDoE approach is pursued 
(Fig. 6 and Fig. 4) it seems that the experiment can be 
stopped well before its planned duration, while maintaining at 
the same time a satisfactory parameter estimation. 
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Figure 6. Case B: biomass and substrate concentration 
profiles as predicted by the model after the parameter 
identification of the DMBDoE planned experiment; 
biomass and substrate concentration measurements are 
indicated by diamonds.   
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Figure 7. Case B: profiles of the manipulated inputs as 
optimised by the two different design strategies.  
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Figure 8. Case B: profiles of actual information for a standard 
MBDoE and for DMBDoE as given by the summation 
term of (5); the dotted line represents the A-optimal 
information limit for a 10% deviation on the final 
estimate.    
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   Table 3. Case B: comparison of parameter estimations for 
DMBDoE planned minimal-length experiments (the 
reference t-value is 1.74 for MBDoE-A2 and 1.66 for 

DMBDoE-B2 estimation). 
 

 DMBDoE-A2 DMBDoE-B2 

Estimate 
[0.3022 0.1809 0.5359 

0.0423]T 
[0.2872 0.1762 
0.4999 0.0457]T 

Conf. Interval 
(95%) 

[±0.0208 ±0.0050 
±0.0410 ±0.020] 

[±0.0643 ±0.0217 
±0.1381 ±0.0192] 

t-values 
[14.48  35.59 13.33 

2.115] 
[4.464  8.118 3.619 

2.381] 

Duration (h) 12.75 14.50  

 

This behaviour is confirmed by performing an additional 
parameter estimation on two DMBDoE experiments (Table 
3) where the trial is stopped as soon as the t-test is satisfied 
for the entire parametric set. 
The results show significant benefits in terms of time saving. 
For both experiments the precise estimation of θ4 is critical. 
When moderately noisy measurements are available 
(DMBDoE-A2), the approach allows reducing the experiment 
duration from 40 to 12.75 hours. When only noisy 
measurements are available (DMBDoE-B2) a slightly longer 
experiment is required (14.5 h), but still the experiment 
length can be significantly reduced. 

4. FINAL REMARKS 

A novel design criterion (DMBDoE), suitable for systems 
where continuous measurements are available, has been 
proposed and analysed in this paper. The parametric 
identification of a nonlinear bioreactor model is significantly 
improved when DMBDoE is used. The novel design 
technique allows exploiting different information patterns 
where the information is maximised since the very beginning 
of the trial. One additional benefit is that it is possible to 
reduce the overall duration of the experiment in a substantial 
way. Future work will assess the effectiveness of the 
technique to identify the set of parameters of more complex 
systems where continuous measurement policies can be 
undertaken.   
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