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Abstract: This is a simulation study on controlling a Kaibel distillation column with model
predictive control (MPC).
A Kaibel distillation column has several advantages compared with conventional binary column
setups. The Kaibel column separates a feed stream into four product streams using only a single
column shell. The distillation process is a multivariable process which leads to a multivariable
control problem. The objective for optimal operation of the column is chosen to be minimization
of the total impurity flow. An offline optimization on a mathematical model leads to temperature
setpoints to be used by a controller. An MPC generally obtain less total impurity flow compared
to conventional decentralized control when the distillation column is exposed to disturbances.
It also counteract process interactions better than decentralized control.

Keywords: Kaibel distillation column, multivariable control system, model based control

1. INTRODUCTION

This paper describes an implementation of a model pre-
dictive controller of a Kaibel distillation column (Kaibel,
1987). The presented results are based on a simulation
model of the column. A Kaibel distillation column is a
thermally coupled distillation column that separates a feed
stream into four product streams in a single column shell
(see fig. 1). A conventional binary column setup would
require three binary columns to separate into four product
streams, and hence three reboilers.

A Kaibel distilllation column is an extension of the Petlyuk
column (Petlyuk et al., 1965). The Petlyuk column and the
dividing wall column (Wright, 1949) have been extensively
investigated in literature. Comparison of different control
strategies for dividing wall columns are presented in van
Diggelen et al. (2010).

The motivation for using a Kaibel distillation column
compared to a conventional binary column setup is mainly
three reasons:

• Less energy consumption (20 - 40 %)
• Less investment capital required
• Less physical space required in a process plant

One of the main challenges that come with use of the
Kaibel column is in the field of control. The energy savings
are not achieved if the distillation column does not operate
around its optimal operating points. The column is a mul-
tivariable process that gives motivation for use of a model
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Fig. 1. Kaibel distillation column: Feed stream F , top
product stream D, side product streams S1 and S2

and bottom product stream B.

predictive controller (MPC). An MPC finds the optimal
inputs to the process by use of mathematical optimization
based on a mathematical model of the process. An MPC
does also naturally take care of constraints in the process,
e.g. input limitations.

A pilot plant of the Kaibel column has been built at De-
partment of Chemical Engineering, NTNU. This column
uses the alcohols butanol, ethanol, methanol and propanol
as feed. The modelled column to be presented is similar to
this experimental column. Experimental runs of the pilot
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Table 1. Inputs to the column model.

Variable Explanation Nominal Unit
value

L Reflux 2.8492 mol/min
V Vapor boil-up 3.0000 mol/min
S1 Sidestream 1 0.2494 mol/min
S2 Sidestream 2 0.2497 mol/min
RL Liquid split 0.2572 -
RV Vapor split 0.3770 -
F Feed stream 1.0000 mol/min
zD Mole fraction of D in feed 0.2500 -
zS1

Mole fraction of S1 in feed 0.2500 -
zS2

Mole fraction of S2 in feed 0.2500 -
q Liquid fraction of feed 0.9000 -
D Top product 0.2508 mol/min
B Bottom product 0.2503 mol/min

plant have verified that the Kaibel column is a process that
is difficult to control since the process is nonlinear and have
considerable interactions. A picture of the experimental
column can be seen in fig. 3. The laboratory column is not
implemented directly with a dividing wall, but has instead
two branches where each branch represents each side of
the wall in a corresponding dividing wall column.

More details and additional simulations for the Kaibel
column are found in Kvernland (2009).

2. DISTILLATION MODEL

A stage-by-stage model is used for modelling of the Kaibel
column. Wilson’s model is used to model the vapor-liquid
equilibrium on a column stage. The column is divided
into seven column sections, and each of these sections
are divided into column stages. The simulated column
model has totally 64 stages which is shown in fig. 2. The
stages are numbered with the prefractionator sections first.
The inputs are defined in Table 1 and are divided into
manipulated inputs (u) and inputs that are considered as
disturbances (d):

u = [L S1 S2 RL D B]
>

, (1)

d = [V RV F zD zS1 zS2 q]
>

. (2)

Note the mole fraction notation where the subscript rep-
resents the key component in the actual flow, e.g. the
amount of key distillate in the feed flow is zD, and xD

in the top product flow. Also note that the vapor split
(RV ) is considered as a disturbance in this work. Initially
the vapor split was thought to be a manipulated input,
but it has shown to be very difficult to control the vapor
flows in practice.

The full distillation model with mass balances, mole frac-
tion balances and temperature differential equations for
all 64 stages gives a state space model with almost 350
states. The temperature differential equations comes from
a simple update law for the temperature at each stage.
The column is built with an open vent, which means that
the pressure inside the column will tend to atmospheric
pressure P0. To make sure that the pressure at each stage
converges to P0, the stage temperature is adjusted:

dTk

dt
= µ (P0 − Pk(xi,k, Tk)) , (3)
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Fig. 2. The modelled column showing the seven sections
and the 64 stages. zF = [zD zS1 zS2 ]

>. zB is given by
the three others since the total mole fraction adds up
to unity.

for all stages k and feed components i. The stage pressure
Pk is found by Wilson’s model. µ is a positive constant
that decides the speed of convergence.

The model is also strongly nonlinear due to the vapor-
liquid equilibrium and the mixing terms in the component
mass balance at each stage.

The model was further extended to include heat loss
and vapor bypassing to describe insufficient mixing at
column stages. These model extensions were done to make
better fit of simulation data compared to experimental
measurements. A model summary is given in app. A.
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3. CONTROLLING THE COLUMN

3.1 Performance objective

We consider a case with a given feed rate F and a
given vapor boil-up V . Note here that given (maximum)
boil-up is usually the optimal mode of operation when
energy is cheap. The objective is then to optimize the
product distribution. We assume that there are no purity
constraints but that we only get paid for main component
in each product. With equal prices for the products the
objective is then equivalent to minimizing the sum of the
impurity flows. The cost function Jss can then be written
as (Strandberg, 2008):

Jss = D(1−xD)+S1(1−xS1)+S2(1−xS2)+B(1−xB) (4)

The cost Jss was minimized with respect to the inputs
given by eq. (1) in addition to the vapor split (RV ),
giving optimal input values presented as “nominal values”
in table 1. In steady state operation the column model
returns the following nominal product purities:

xnom =







xD,nom

xS1,nom

xS2,nom

xB,nom






=







0.9703
0.9361
0.9589
0.9949






. (5)

3.2 Level and temperature control

The inputs given by eq. (1) must be manipulated from a
controller. The top and bottom product streams (D and
B) are chosen to be used for control of the condenser
and reboiler levels respectively. These product streams are
controlled by PI-controllers with specified level setpoints.
The rest of the inputs are used for temperature control.
Temperature control is an efficient and simple way of
controlling the purities indirectly. Temperatures along the
column have a good correlation with the product purities
inside the column (Skogestad, 2007). Hence, the control
structure is divided into level control and composition
control (temperature control).

Temperatures at the column stages 17, 30, 49 and 59 are
chosen as control variables for the temperature loops, i.e.

y = [T17 T30 T49 T59]
>

. (6)

This output stage selection is done as a part of earlier work
(Strandberg and Skogestad, 2006). Here the minimum
singular value method (Halvorsen et al., 2003) was used.

The temperature setpoint values are easily found from the
distillation model when the presented optimal inputs in
eq. (5) are applied in steady state operation:

ynom =







T17,nom

T30,nom

T49,nom

T59,nom






=







368.29K
341.97K
379.64K
355.83K






. (7)

3.3 Decentralized control

A decentralized controller is the simplest way of designing
a multivariable controller. Each process output is con-
trolled by a linear controller from a selected input. For
the Kaibel column T17 was chosen to control the liquid
split (RL), T30 controls the reflux (L) and T59 and T49

PI

PI59

PI

30

PI

17

49

(a) Decentralized control of the
Kaibel column. The figure shows the
four temperature loops.

(b) Picture of
pilot plant.

Fig. 3. Decentralized control structure and pilot plant at
NTNU.

controls side stream 1 and 2 respectively (S1 and S2).
Each temperature measurement is fed into a PI-controller
controlling its respective process input, shown in fig. 3(a).

The decentralized PI-controller loops were tuned individ-
ually using Simple / Skogestad Internal Tuning Rules
(SIMC) (Skogestad, 2003).

3.4 Model predictive control

MPC is an appropriate way to control a multivariable
process with considerable interactions such as the Kaibel
column.

Two different MPCs have been made; a single layer MPC
that controls the real process inputs, and a supervisory
MPC controlling the setpoints of a decentralized control
layer. The two control structures are shown in fig. 4.

The level controllers are still ordinary PI-controllers, it
is the composition control that is handled by the MPC.
The objective for the MPC controllers is to minimize the
temperature deviations from the pre-computed setpoints.

Using the original performance objective in the MPC, the
total impurity flow, would require estimation or measures
of the product purities when the column is in operation.
This is not considered here.

The internal prediction model used by the MPC to find op-
timal process inputs is made from the presented distillation
model. The prediction model is derived from linearization
of the full nonlinear model, and not from step-response
experiments. Since the state space model consists of almost
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Fig. 4. The different MPC control structures.
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Fig. 5. Singular values for the linearized model with L,
S1, S2 and RL as inputs and the four temperatures as
outputs. Original linearized model (solid) and reduced
model (dashed).

350 states, it is hard to use this large model inside an MPC
optimization problem. The linearized model was therefore
reduced down to 20 states. The reduced model of order
20 did not affect the dynamic behaviour for relevant fre-
quencies too much compared to the full linear model. This
is verified by plotting the singular values in fig 5 for the
two linear models. The singular values for the system gives
information about the gains of the process (Skogestad and
Postlethwaite, 2005). Plotting the singular values around
closed loop frequencies gives a good indication of how
good approximation the reduced model is. Linear models
of even less order than 20 were tested (10 and 15), but
simulations with such orders did not give robust control.
However, sufficient robustness was obtained with a model
order of 20, which is still considerably less than the full
model. The robustness was tested by simulating a set of
setpoint changes, disturbance and model parameter errors.
The states in the reduced model no longer represent actual
physical properties like stage compositions and tempera-
tures.

MPC Toolbox in Matlab was used for implementation of
the MPCs. The optimization problem used by the MPC
is presented in Bemporad et al. (2009). It uses quadratic
expressions and weighs the output reference error (y −

ynom) and input changes from one time step to the next
(∆u). Hence, the MPC objective function can be written
as:

Jdyn =

4
∑

i=1

w
y
i (y(i)− ynom(i))

2
+

4
∑

j=1

w∆u
j ∆u(i)2 (8)

Note that this dynamic optimization objective Jdyn is
unlike the steady state objective (Jss) given in eq. (4).

The weights for the single layer MPC were chosen as:

w
y
T17

= w
y
T30

= w
y
T49

= w
y
T59

= 1 (9)

w∆u
L = w∆u

S1
= w∆u

S2
= w∆u

RL
= 1 (10)

The supervisory MPC had similar weights for the output
reference error, but less weights on the input changes;
w∆u

L = w∆u
S1

= w∆u
S2

= w∆u
RL

= 0.01.

Improved performance may be obtained by suitable fine
tuning of the weights and parameters, but this was not
investigated further in this work.

Input constraints were added to the MPC such that
unrealistic inputs were avoided. The liquid split (RL)
and the side streams (S1 and S2) were constrained to a
maximum value of 1, the reflux flow to 3.

10min was chosen as the sampling time of the MPC and a
prediction horizon equal to 50 timesteps, i.e. 500min. The
control horizon is equal to the prediction horizon.

4. SIMULATIONS

The simulations were done in Matlab. In the MPC, the
states were updated by an observer based on the measure-
ments from “the plant”, here realized by the full nonlinear
model.

4.1 Disturbance tests and setpoint change

To compare the controller performance different distur-
bance tests were performed. It is important that the dis-
tillation column is able to handle changes in the feed since
this flow is determined by other parts of the process plant
where this column is in operation. Therefore the controlled
column has been tested for changes in the feed flow and
feed composition. The vapor split is a degree of freedom
with great uncertainty and is therefore included in the
disturbance tests.

Interactions in the process and how the controllers coun-
teract these interactions, can be seen in a simulation with
a change in one of the temperature setpoints.

4.2 Disturbance responses

Temperature responses are shown in fig. 6. Fig. 7 shows
the performance objective value versus time for the corre-
sponding simulations. From the responses in fig. 6 and 7
we see that the MPCs have a generally better performance
than the decentralized controller (solid line). The single
layer MPC reaches the respective setpoints quite slow but
has the least overshoot after a disturbance.

4.3 Change in the setpoint for T17

Fig. 8 show the controlled temperatures when one of the
setpoints is changed.
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Fig. 6. Plots showing the controlled temperatures affected
by different disturbances. Decentralized PI-control
(solid), single layer MPC (dashed), MPC combined
with PI-control (dotted). The disturbances occured
at time 500min.
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Fig. 7. Total impurity flow. Decentralized PI-control
(solid), single layer MPC (dashed), MPC combined
with PI-control (dotted). The disturbances occured
at time 500min.
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Fig. 8. Setpoint change for T17 (+5 K) at time 500min.
Decentralized PI-control (solid), single layer MPC
(dashed), MPC combined with PI-control (dotted).

4.4 Robustness simulations

A large number of simulations were performed in the work
of Kvernland (2009) to check the robustness of the different
controllers. Simulations with input gain error, time delay
and increasing insufficient mixing at column stages (vapor
bypassing) were tested. The simple decentralized controller
and the supervisory MPC gave best performance.

5. CONCLUSIONS

An MPC is verified to be an appropriate controller for
a Kaibel column through simulations. The MPC with a
linear reduced order model performed satisfactorily even
if the full model is nonlinear with a large number of states.

An MPC generally achieves less impurity flow during dis-
turbances and reduces interactions in the process com-
pared to a decentralized controller. Fig. 8 shows that
the MPCs reduce process interactions more compare to a
decentralized controller. A supervisory MPC is preferable
since it performs better than a single layer MPC during
robustness tests.

5.1 Further work

The authors want to see how the MPC works in practice
by using it to control the experimental column built at
NTNU.
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Appendix A. DISTILLATION MODEL SUMMARY

Table A.1. Distillation model summary.

A single simulation step in the simulation model

1 Compute liquid and vapor flows for each stage k in the column,

i.e. determine:

Lk, ∀k, where the liquid input of stage 25 is given (see fig. 2)

Vk, ∀k, where the vapor input of stage 56 is given (see fig. 2)

2 Compute change in mass for each stage k using the differential

equation for mass balance:
dMk
dt

= Lk+1 − Lk + Vk−1 − Vk

3 Compute vapor mole fraction for each component i at each

stage k:

yi,k =
xi,kγi,kp0

i,k
(Tk)

Pk
,

where the activity coefficient γi,k is found by Wilson’s model

and the pressure at stage k is:

Pk(xi,k, Tk) =
∑

Nc

i=1
xi,kγi,kp0

i,k(Tk)

(liquid mole fraction xi,k and temperature Tk used in these

equations comes from the previous simulation step)

4 Compute liquid mole fraction for each component i at each

stage k:
dxi,k

dt
= 1

Mk
(Lk+1(xi,k+1 − xi,k)− Vk(yi,k − xi,k)+

Vk−1(yi,k−1 − xi,k))

5 Update temperature at each stage k:
dTk
dt

= µ (P0 − P (xi,k, Tk))

Copyright held by the International Federation of Automatic Control 544


