
     

Fig. 1.  Thermal budget and temperature profile for 

spike annealing. 

Fig. 2.  Change of thermal budget shape as the line 

width getting narrower. (a) soak (b) spike. 
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Abstract: Rapid thermal processing (RTP) systems with spike-shaped temperature profile is widely used 

in IC industry for providing precise thermal budgets. This thermal budget control issue gets more crucial 

as the technology node progressively shrinking. With its exceptionally stringent performance 

requirements (for example, high temperature uniformity and high temperature ramp-up/down rate), 

temperature control in RTP systems is a challenging task. In this study, we present the methodology of 

designing a control system for providing precise thermal budget. By tuning controller parameters and 

designing the set-point profile, the method targets thermal budget indices instead of temperature servo 

control. Two types of controllers, PI and PI
2
D, are considered. Practical issues, such as the feasibility 

range for temperature ramp-up/down rate and the effect of model mismatch, are also discussed. The 

results show the simple PI controller performs well in spike RTP systems. 

Keywords: Thermal budget control, Rapid thermal processing, Spike annealing, PI, PI
2
D. 

 

1. INTRODUCTION 

Single wafer rapid thermal processing (RTP) is widely used 

in the fabrication of semiconductor devices. It has become 

one of the key technologies due to faster wafer processing 

with precise control of thermal budget. The thermal budget is 

an important process issue contributed from the duration and 

maximum of temperature beyond a specific reference value, 

as represented as Fig. 1. This index needs a tight process 

control in many processes, such as rapid thermal annealing, 

oxidation in semiconductor manufacturing and reflow 

soldering in IC packaging industry. A review of RTP control 

has been given by Edgar et al. (2000). 

The traditional annealing process uses a soak-shaped 

temperature profile as shown in Fig. 2(a). It consists of three 

steps: 1) rapid heating to the desired temperature, 2) 

processing for a prescribed time at constant temperature, 3) 

rapid cooling to an ambient condition. However, as 

dimension keeping shrinking, the demand of shallow 

junctions requires very tiny and precise applied thermal 

energy. Therefore, the spike annealing process, as shown in 

Fig. 2(b), is the way to keep scaling requirements. In the 

spike annealing process, the second step in traditional 

annealing process is removed and the ramp-up/down rate of 

temperature trajectory is higher to prevent significant 

spreading of the dopant profile (Jung et al., 2003). Obviously, 

the spike-shaped temperature control dominates the reliability 

and yield of semiconductor manufacturing.  

In Fig. 1, the criteria of temperature trajectory for thermal 

budget control usually contain three indices: the duration of 

exceeding the reference value, the maximum temperature, 

and the ramp-up/down rate. As a result, a triangular-shaped 

set-point profile is usually applied for thermal budget control. 

In literature, various control methods have been proposed for 

RTP to follow the desired temperature trajectory. But most of 

them, such as Balakrishnan and Edgar (2000), Cho et al., 

(2005), and Dassau et al. (2006), deal with the soak 

annealing process, while few methods can apply to spike 

annealing process (Emami-Naeini et al., 2003). However, 
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Fig. 3.  Feedback control system and setpoint profile for 

thermal budget control. 

achieving desired thermal budget by designing a tightened 

servo control system is difficult and complex due to high set-

point ramp-up/down rate. Thus, in this work, we consider 

targeting the control performance on the indices for thermal 

budget instead of set-point tracking. In this way, the thermal 

budget can be precisely controlled and the control system 

design is much simpler. 

2. RTP SYSTEM 

A brief description of the single wafer RTP system and an 

alternative formulation of the control problem for it will be 

given in this section. 

2.1  Process Description 

In a RTP chamber, powers are supplied to several rings of 

tungsten-halogen lamps, and energy is transferred through a 

quartz window onto a thin semiconductor wafer via direct or 

reflective paths. The wafer temperature is controlled by 

manipulating the power sources. Assume the wafer is divided 

into several annual zones, and so are the cluster lamps. A 

physical model of the wafer temperature at different positions, 

Ti, is given by the energy balance equation (Huang et al., 

2000): 

cond conv rad lampi

i p i i i i

dT
V C q q q q

dt
ρ = + + +             (1) 

where subscript i is the index of annual zone with volume Vi, 

ρ³ is the density, Cp is the heat capacity, and qi
cond

, qi
conv

, qi
rad

, 

and qi
lamp

 represent the heat exchanged by conduction, 

convection, radiation, and heat addition from the lamp power, 

respectively. After linearization about an operating point, (1) 

can be written in deviation form as (Schaper et al., 1992): 

i

i i ij j

j

dT
T K U

dt
τ = − +∑
ɶ

ɶ ɶ                            (2) 

Therefore, a simple first-order model could be used to 

describe the relationship between the lamp power from the 

jth zone, Uj, and the wafer temperature at the ith zone, Ti. 

2.2   Problem Formulation for Thermal Budget Control 

Although the RTP system is a multivariable process in nature, 

as shown in (2), the present work will focus on single-input 

single-output (SISO) case for simplicity. The results of SISO 

systems will serve as the basis of further extensions to 

multivariable systems. Since an approximated first-order 

transfer function of the process is obtained, the control 

designs are based on a process model of the following form. 

( )
1

P

K
G s

sτ
=

+
                               (3) 

For the thermal budget control problem of RTP system, we 

formulate the control objective as two specifications: time 

duration beyond the reference temperature, ∆t , and the range 

between the maximum temperature and the reference value, 

∆T , as shown in Fig. 1. Since constructing a control system 

to perfectly tracking this spike set-point is almost an 

impossible task, in this work, designing both the set-point 

profile and the controller to satisfy the specifications of 

thermal budget is considered. The spike-shaped set-point 

profile can be characterized as three parameters: the ramp-up 

rate k1, the ramp-down rate k2, and the maximum value of set-

point, 
max

set
T  (see Fig 3). The controllers considered are PI 

controller and PI
2
D controller (i.e. a PID controller with 

double integrators) (Huang et al., 2000). 

3. CONTROL SYSTEM DESIGN 

In this section, designs of set-point profile and controllers, 

including PI and PI
2
D controllers, to satisfy the control 

objectives is presented. 

3.1   Design of PI Control System 

The feedback control structure is illustrated in Fig. 3. The PI 

controller transfer function is given as 

                           
1

( ) 1
C C

I

G s K
sτ

= +
 
 
 

                              (4) 

For simplicity, the parameter τ
I

 is tuned by τ τ=
I

 to cancel 

the process time constant. By the final value theory, an offset 

appears at the steady-state when a PI controller is 

implemented with a ramp up input signal. The magnitude of 

this offset is: 

1
0 0

1
( )

1 ( ) ( )
( ) lim ( ) lim

set

P C

cl
s s

T s
G s G s

e sE s s kτ
→ →

=
+

∞ = =   (5) 

where ( )
cl I C

K Kτ τ= !is the closed-loop time constant. A 

sketch of the closed-loop response is shown in Fig. 4. Let 

= −
p

t t t  where 
p

t  is the climax of the set-point spike, and 
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= −
p

T T T  where Tp=T(t=tp). In the ramp-up period, assume 

that the process has reached the steady-state before the rising 

temperature crosses the reference value 
ref

T . Therefore, 
p

T  

can be directly obtained as 
max 1

τ= −
set

p cl
T T k , where 

max

set
T  is 

the maximum value of set-point. With such a coordinate 

transformation, the set-point trajectory for 0≤t  can be 

written as 
max 1

( ) = +
set set

T t T k t , and the temperature 

response is given as 
1

( )T t k t= . On the other hand, the set-

point trajectory of the ramp-down period ( 0≥t ) is 

represented as 
1 2

( )
set

cl
T t k k tτ= − . Consequently, the 

temperature response of the closed-loop system for 0≥t  

can be derived from the Laplace inversion, with the initial 

condition (0) 0=T : 

{ } ( )( )/1

1 2 2
( ) ( ) 1

τ
τ

−−
= = + − −cl

t

cl
T t L T s k k e k t   (6) 

With Eq.(6), the maximum temperature can be found as 

1 2

max 1 2

2

( ) lnτ τ
+

= = −
 
 
 

c cl cl

k k
T T t k k

k
            (7) 

where 

1 2

2

lnτ
+

=
 
 
 

c cl

k k
t

k
                            (8) 

Let the temperature response intersects the reference 

temperature at 
1
t  and 

2
t , where 

1 2
<t t . Notice that the value 

of 
1
t  may be negative or positive. For 

1
0≤t , it is obtained 

by equalling ( )T t  to 
ref

T  as 

1

1

=
ref

T
t

k
                                     (9) 

For 
1

0>t , by temperature response of (6) intersecting the 

reference temperature, the following equation for 
1
t  holds. 

( )( )1 /

1 1 2 2 1
( ) 1 0

τ
τ

−
− = + − − − =cl

t

ref cl ref
T t T k k e k t T   (10) 

On the other hand, 
2
t  is always positive and the following 

equation for 
2
t  holds. 

( ) ( )2 /

2 1 2 2 2
( ) 1 0

τ
τ

−
− = + − − − =cl

t

ref cl ref
T t T k k e k t T  (11) 

Now, the control specifications can be represented as 

2 1
∆ = −t t t                                    (12) 

max
∆ = −

ref
T T T                               (13) 

For simplicity, assume k1 and k2 are given. Therefore, one can 

tune the parameter τ
cl

 (or KC) and design Tp (or 
max

set
T ) to 

satisfy both specifications of ∆t  and ∆T . 

Two cases for 
1
t are discussed as follows. 

Case 1. 1 0t ≤ .  

First, by substituting (7), (9), (12), and (13) into (11), a 

nonlinear equation for τ
cl

 is resulted. Thus, τ
cl

 can be solved 

using a simple root-finding method (e.g., Newton-Raphson 

method). Then, Tp is calculated by 
maxp ref

T T T T= + ∆ − , 

and 
max

set
T  can be obtained as 

max 1
τ= +

set

p cl
T T k . 

From (9), 
1

0≤t  implies 0<
ref

T . In the limiting condition 

of 
1

0=t , we have 0=
ref

T  and, by (13), 
max

= ∆T T . 

Therefore, the value of τ
cl

 in this limiting case can be found 

from (7) as: 

*

1 2

1 2

2

ln

τ
∆

=
+

−
 
 
 

cl

T

k k
k k

k

                      (14) 

Since the closed-loop time constant τ
cl

 must be positive, 

*
0 τ τ< <

cl cl
 is thus necessary to have 

1
0≤t . For (11) 

having a solution in the interval 
*

0 τ τ< <
cl cl

, the sufficient 

condition is ( ) ( )*

1 1
0 0τ <

cl
F F , where 

( ) ( ) ( )( ) ( )

( )

1 /

1 1 2 2 1

max

1
τ

τ τ
− +∆

= + − − + ∆

− ∆−

cl
t t

cl cl
F k k e k t t

T T
   (15) 

Case 2: 
1

0>t . 

The procedure is similar to the previous case except the 

calculation of 
1
t . By combining (10) and (11), 

1
t  can be 

solved as  

( )( )/

1 2

1

2

1
ln

τ
τ

τ

−∆
+ −

=
∆

 
 
 
 

cl
t

cl

cl

k k e
t

k t
             (16) 

Substitute (7), (12), (13), and (16) into (11) to solve τ
cl

, and 

then calculate 
max

set
T .  

To have 
1

0>t , 
*

τ τ< < ∞
cl cl

 is required. The sufficient 

condition for it is ( ) ( )*

1 1
0τ ∞ <

cl
F F . When τ → ∞

cl
, we 

have 
1 2

= = → ∞
c

t t t , and hence ( )1
0∞ → ∆ >F T . So 

the sufficient condition reduced to ( )*

1
0τ <

cl
F . 

Compared to the set-point profile, the temperature trajectory 

obtained in the proposed PI control system is delayed by a 

period of τ
cl

. Therefore, the set-point should be given a time 

of τ
cl

 before the desired temperature trajectory. 

3.2  Design of PI
2
D Control System 

By applying internal model control (IMC) (Morari, 1989) 

principal to the first order process of (3) for dealing with a 
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Fig. 5.  Closed-loop response using PI
2
D controller 

(Dashed line represents the transformed coordinate). 

type-2 (or ramp) input signal, an equivalent feedback 

controller, PI
2
D, can be obtained: 

      
2 2

( 1)(2 1)1
( )

τ τ

τ

+ +
=

f

C

f

s s
G s

K s
               (17) 

where τ
f

 is a tuning parameter that determines the speed of 

the closed-loop response. By the final value theory, there will 

be no control error offset at steady-state. A sketch of the 

close loop response of PI
2
D control structure is illustrated in 

Fig. 5. Again, similar coordinate transformation is applied, 

and also assume that the process has reached the steady-state 

before the rising temperature reaching 
ref

T . Thus, in the 

ramp-up period, the temperature is just exactly the same as 

set-point, and 
max

=
set

p
T T . In the ramp-down period ( 0≥t ), 

we have 
2

( ) = −
set

T t k t , and the temperature response can 

be derived from the Laplace inversion of ( )T s , with two 

initial conditions (0) 0=T  and 
1

'
(0) =T k : 

{ } ( )
/1

1 2 2
( ) ( )

τ−−
= = + −f

t
T t L T s k k t e k t         (18) 

With (18), the maximum temperature occurs at 
c
t  which can 

be obtained by 

/

1 2 2

( )
( ) (1 ) 0c f

t c

f

tdT t
k k e k

dt

τ

τ

−
= + − − =         (19) 

Or, 
c
t  can be solved as 

2

1 2

1 exp(1)τ τ φ= − =
+

  
  
  

c f f

k
t W

k k
         (20) 

where ( )•W  denotes the Lambert W-function (Corless et al., 

1996) and 

2

1 2

1 exp(1)φ = −
+

 
 
 

k
W

k k
                       (21) 

Thus, the maximum temperature is found as 

( )max 1 2 2
( )

φ
τ φ τ φ

−
= = + −

c f f
T T t k k e k         (22) 

The temperature response first intersects the reference 

temperature at 
1
t . For 

1
0≤t , it can be computed by (9). For 

1
0>t , the following equation for 

1
t  holds. 

( ) 1 /

1 1 2 1 2 1
( ) 0

τ−
− = + − − =f

t

ref ref
T t T k k t e k t T      (23) 

Furthermore, 
2
t  can be found by ( )T t  intersecting 

ref
T : 

( ) 2 /

2 1 2 2 2 2
( ) 0

τ−
− = + − − =f

t

ref ref
T t T k k t e k t T     (24) 

Like the case of PI control, by given k1 and k2, one can tune 

the controller parameter, τ
f

, and design 
p

T  (or 
max

set
T )  to 

satisfy both specifications of ∆t  and ∆T . 

Also, two cases for 
1
t  are discussed as follows. 

Case 1. 
1

0≤t . 

First, by substituting (9), (12), (13), and (22) into (24), a 

nonlinear equation for τ
f

 is resulted. After solving for τ
f

, 

max

set
T  is calculated by 

max max

set

p ref
T T T T T= = + ∆ − . 

In the limiting condition of 
1

0=t , we have 0=
ref

T  and 

max
= ∆T T . Therefore, the value of τ

f
 in this limiting case 

can be found from (22) as 

( )
*

1 2 2

φ
τ

φ φ
−

∆
=

+ −
f

T

k k e k
                      (25) 

As a result, 
*

0 τ τ< <
f f

 is necessary to have 
1

0≤t . For 

(24) having a solution in the interval 
*

0 τ τ< <
f f

, the 

sufficient condition is ( ) ( )*

2 2
0 0τ <

f
F F , where 

( ) ( ) ( )
( )

( )

( )

1 /

2 1 2 1 2 12

max

f
t t

f
F k k t t e k t t

T T

τ
τ

− +∆
= + + ∆ − + ∆

− − ∆
  (26) 

Case 2: 
1

0>t . 

The procedure is similar to the previous case except the 

calculation of 
1
t . By combining (23) and (24), 

1
t  can be 

solved as: 

( ) ( )
1

1

τ

τ

τ α τ α
∆

∆

− + ∆
=

−

f

f

t

f f

t

W W e t
t

e
             (27) 

where  

( )
( )

2

1 2

exp
1

1

τ

τ

τ τ
α

τ

∆

∆

∆ ∆ ∆
+

+ −
=

−

 
 
 
 

f

f

t

f f

t

f

k t t t

k k e

e
          (28) 

Substitute (12), (13), (22) and (27) into (24) to solve τ
f

, and 

then 
max

set
T can be calculated.  
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Fig. 8. Effect of model mismatch for PI and PI

2
D controller. 

(a) 

6.5 7 7.5 8 8.5 9
980

990

1000

1010

1020

1030

1040

1050

1060

1070

Time (sec)

T
e
m

p
e
ra

tu
re

 (o
C
)

T
ref

T

T
set

∆∆∆∆ t = 2 sec

∆∆∆∆ T = 50 
o
C

 
(b) 

6.5 7 7.5 8 8.5 9
980

990

1000

1010

1020

1030

1040

1050

1060

Time (sec)
T
e
m

p
e
ra

tu
re

 (o
C
)

T
set

T ∆∆∆∆ t = 2 sec

∆∆∆∆ T = 50 
o
C

T
ref

 
Fig. 7. Control results. (a) PI (b) PI

2
D controller. 

(a) 

 
(b) 

 

Fig. 6. Feasibility ranges on k1 and k2 for t∆ =2 sec and 

T∆ =50
 o
C. (a) PI control (b) PI

2
D control. 

To have 
1

0>t , 
*

τ τ< < ∞
f f

 is required. Its sufficient 

condition is ( ) ( )*

2 2
0τ ∞ <

f
F F . When τ → ∞

f
, we have 

1 2
= = → ∞

c
t t t , and hence ( )2

0∞ → ∆ >F T . So the 

sufficient condition reduced to ( )*

2
0τ <

f
F . 

4. SIMULATION EXAMPLE 

Consider the following first-order model for RTP system. 

 
4

( )
6 1

=
+

P
G s

s
                                 (29) 

The process conditions are given as: the ramp-up rate 

k1=150
o
C/sec, the ramp-down rate k2=40

o
C/sec, and the 

reference temperature Tref =1000
o
C. The control targets are 

set as t∆ =2 sec and T∆ =50
 o
C. 

4.1 Nominal Condition 

For these control targets, the feasibility ranges on k1 and k2 

for PI and PI
2
D control systems are first constructed based on 

the sufficient conditions derived in the previous section. The 

result is shown in Fig. 6. It can be seen that the proposed 

method has a wide feasibility range on k1 and k2 by tuning τ
cl

 

or τ
f

. Nevertheless, PI control system has a wider feasibility 

range for 
1

0≤t  than PI
2
D control system. 

Under the given values of k1 and k2, Fig. 6 shows that both PI 

and PI
2
D controllers can be used to achieve the targets with 

1
0≤t . For PI controller, the parameter τ

I
 is set as τ

I  =τ = 

6. Then, by the proposed method, τ
cl

= 0.211 (or KC =7.10) 

and 
max

set
T =1063

 o
C are resulted to hit two control targets. The 

set-point and temperature trajectories are as shown in Fig. 

7(a). For PI
2
D controller, the control specifications are 

achieved by tuning τ
f

= 1.267 and 
max

set
T =1001

o
C. The control 

result is shown in Fig. 7(b).  

4.2 Effect of Modelling Error 

In case of process-model mismatch, the control specifications 

cannot be exactly achieved. Here, the effect of model 

mismatch is investigated through simulations. The errors of 

t∆  and T∆  under different values of model mismatch for PI 

and PI
2
D control systems are shown in Fig. 8. It can be seen 

that the effect of modelling error for PI
2
D control is greater 

than that for PI control, which indicates PI control system is a 

more robust one. 

It is interesting to note that the feasibility regions of PI
2
D 
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Fig. 10. Effect of model mismatch for different tuning of 

PI
2
D controller. 
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Fig. 9. Control results using PI

2
D controller. (a) τ

f
= 0.029  

(b) τ
f

= 1.078 

control system in Fig. 6(b) for 
1

0≤t  and 
1

0>t  are 

overlapped, which implies the control specifications can be 

achieved with two different control designs. To compare 

these two control results, k1=180
o
C/sec and k2=28

o
C/sec are 

selected for demonstration. The calculated parameters are 

τ
f

= 0.029 and 
max

set
T = 1048.5

 o
C for 

1
0≤t , and τ

f
= 1.078 

and 
max

set
T = 993.1

o
C for 

1
0>t . The control result is shown in 

Fig. 9. Although the shapes of these two temperature 

trajectories are quite different, the control specifications are 

exactly achieved in both cases. When there is modelling error, 

the errors of t∆  and T∆  under different values of model 

mismatch are shown in Fig. 10. The effect of modelling error 

in the case of τ
f

= 0.029 is quite small compared to that of 

τ
f

= 1.078. Note that the system with more aggressive tuning 

(smaller τ
f

) not only can follow the set-point well, but also 

exhibit good robustness. According to this result, a smaller 

value of τ
f

 should be designed when the ramp-up/down 

rates fall into this region. 

5. CONCLUSIONS 

Since the RTP system has a very high system momentum, 

targeting perfect servo control is almost unachievable. When 

the control structure reaches its limitation, balancing design 

and control of the system is a feasible solution. In this study, 

we show the method for targeting thermal budget 

specification by designing controller and set-point profile. It 

comes out that the simple PI controller performs better 

compared to PI
2
D controller in the aspects of feasible range 

on temperature ramp-up/down rate and system robustness. 

In practice, the heating process is highly nonlinear and the 

wafer temperature uniformity is also a very important 

specification. To achieve good temperature uniformity within 

wafer, nonlinear multivariable control strategies have to be 

developed. The proposed method in this paper has the 

potential for such an extension which are under research.  

REFERENCES 

Balakrishnan, K. S. and Edgar, T. F. (2000). Model-based 

control in rapid thermal processing. Thin Solid Films, 

365, 322-333. 

Cho, M., Lee, Y., Joo, S., and Lee, K. S. (2005). Semi-

empirical model-based multivariable iterative learning 

control of an RTP system. IEEE Trans. Semicond. 

Manuf., 18, 430-439. 

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jerey, D. J., 

and Knuth, D. E. (1996). On the Lambert W function. 

Adv. Computational Maths, 5, 329-359. 

Dassau, E., Grosman, B., and Lewin. D. R. (2006). Modeling 

and temperature control of rapid thermal processing. 

Comput. Chem. Eng., 30, 686-697. 

Edgar, T. F., Butler, S. W., Campbell, W. J., Pfeiffer, C., 

Bode, C., Hwang, S. B., Balakrishnan, K. S., and Hahn, 

J., (2000). Automatic control in microelectronics 

manufacturing: Practices, challenges, and possibilities. 

Automatica, 36, 1567-1603. 

Emami-Naeini, A., Ebert, J. L., de Roover, D., Kosut, R. L., 

Dettori, M., Porter, L. M., and Ghosal, S. (2003). 

Modeling and control of distributed thermal systems. 

IEEE Trans. Contr. Syst. Techn., 11, 668-683. 

Huang, C. J., Yu, C. C., and Shen, S. H., (2000). Selection of 

measurement location for the control of rapid thermal 

processor. Automatica, 36, 705–715. 

Jung, M. Y. L., Gunawan, R., Braatz, R. D., and Seebauer, E. 

G. (2003). Ramp-rate effect on transient enhanced 

diffusion and dopant activation. J. Electronchemical 

Society, 150, G838-G842. 

Morari, M. and Zafiriou, E. (1989). Robust Process Control. 

Prentice-Hall Inc., NJ. 

Schaper, C., Cho, Y., and Kailath, T. (1992). Low-order 

modeling and dynamic characterization of rapid thermal 

processing. Appl. Phys. A, 54, 317-326. 

Copyright held by the International Federation of Automatic Control 526


