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Abstract: This paper focuses on the design of control Lyapunov function for control affine
systems to guarantee the stability for the states of interest in a specified region. Without
restrictive assumptions found in previous approaches, a min-max optimization problem is
formulated to solve for a quadratic Lyapunov function. A derivative-free coordinate search
method is employed to optimize a non-differentiable objective function. Approximation of the
objective function as a piecewise linear function gradually reduces search space, leading to
an effective Lyapunov function. A CSTR example with actuator saturation is illustrated to
demonstrate the efficacy of the proposed approach.
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1. INTRODUCTION

Though nonlinear models are commonly used for describ-
ing chemical/biochemical process dynamics, designing a
feedback control law that stabilizes such systems is not an
easy task. Even for special cases, such as a control affine
system, only a few approaches are available under restric-
tive assumptions. For instance, nonlinear model predictive
control can only guarantee the stability when a local linear
model is stable and the nonlinear programming has a feasi-
ble solution for an initial state (Chen and Allgöwer, 1998).
Backstepping provides a stable and recursive control for
the lower triangular system with known control law and
Lyapunov function for its subsystems (Krstic et al., 1995).
Feedback linearization techniques transform a nonlinear
system to an equivalent linear system via a diffeomorphism
transformation for the state, input, and output. Neverthe-
less, such transformation may hold only for a small region
and the input constraints are not considered explicitly
(Isidori, 1995).

Control Lyapunov function (CLF) based approaches have
recently received increasing attentions due to their explicit
consideration of the stability prior to the regulator design.
Once this CLF is constructed, design of a feedback law
(e.g., ut = Kxt) can be straightforward (Sontag, 1989).
Though much of the previous work has focused on im-
proving control algorithm or enhancing the initial region
where closed loop stability can be achieved based on a
known CLF (e.g., see Mhaskar et al. (2006); Mahmood and
Mhaskar (2008); Zhong et al. (2008); Primbs and Giannelli
(1998)), the main bottleneck to the success of these meth-
ods lies in the construction of Lyapunov function. One
simple approach is to linearize a nonlinear system and
solve the Riccati equation and obtain a quadratic CLF,
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but the inherent discrepancy between linear and nonlinear
dynamics makes the analysis difficult.

Not only a systematic rule to find a CLF for nonlinear
systems is currently unknown but the region of attraction
(ROA) of the resulting CLF also needs further investiga-
tion. A sum of squares programming based approach is
proposed to find a CLF for polynomial dynamics system
without considering input constraints (Tan, 2006). Con-
struction of a CLF for the system under Jurdjevic-Quinn
conditions is also proposed (Mazenc and Malisoff, 2005).
Zubov’s partial differential equation is solved to design
a CLF (Dubljevic and Kazantzis, 2002), which cannot
specify a ROA. A genetic programming based approach
is employed to design a CLF for one-input systems only
(Tsuzuki et al., 2006). Some optimization based frame-
works, similar to the proposed scheme in this work, are
proposed to compute a CLF (Davision and Kurak, 1971;
Johansen, 2000). However, these approaches do not con-
sider state regions of interest for stabilization. In addition,
these are computationally expensive.

This work presents a method that constructs a CLF, which
stabilizes the states in a specified region without restrictive
assumptions as in the previous work. Construction of a
CLF is formulated as a constrained min-max problem and
its solution method is also presented. The rest of the paper
is organized as follows: some preliminaries on CLF are
given in Section 2; Section 3 describes the formulation
and parametrization of CLF and its optimization proce-
dure. Simulation results are given in Section 4. Finally,
concluding remarks are provided.

2. PRELIMINARY

2.1 Control Lyapunov function

We consider the following nonlinear control affine system:
ẋ = f(x) + g(x)u (1)
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where x ∈ <n is the state vector, f(x) = [f1(x), f2(x), . . .,
fn(x)]T ∈ <n, g(x) = [g1(x), g2(x), . . . , gm(x)] ∈ <n×m,
and input vector u ∈ <m satisfies ai ≤ ui ≤ bi, i =
1, 2, . . . ,m.

A function V : <n → < is a control Lyapunov function if
(i) V is positive definite and (ii) the following inequality
holds:

inf
u∈<m

∂V

∂x
f(x) +

∂V

∂x
g(x)u < 0 ∀x 6= 0 (2)

2.2 Region of attraction

Since the global asymptotical stability is very strict and
cannot be achieved for most nonlinear systems with input
constraints, the local asymptotical stability and its region
of attraction (ROA) is analyzed. Usually, it is determined
as a set related to a Lyapunov function. Denote the
equilibrium point as x0, if there exists r > 0 satisfying:

V (x̃) < r ⇒ lim
t→∞

||x(t, x̃)− x(t, x0)|| = 0 (3)

where x(t, x̃) is the state at time t with an initial state x̃.
Given the largest possible value for r, the estimation of
ROA is defined as: Ω = {x|V (x) < rmax}. Moreover, there
is Ω ⊂ Γ such that

Γ = {x| inf
u∈<m

∂V

∂x
f(x) +

∂V

∂x
g(x)u < 0} (4)

Fig 1 shows the relationship between Ω and Γ.

! 

" 
Fig. 1. The largest region of attraction.

2.3 Control law design

For the control affine system with bounded input, the
following Lyapunov function-based feedback law is pro-
posed in Lin and Sontag (1991); El-Farra and Christofides
(2003):

Define the a(x) and b(x) as:

a(x) =
∂V

∂x
f(x) (5)

b(x) =
∂V

∂x
g(x) (6)

Then the control policy is prescribed as:

u(x) =
{
K(x)bT (x) if ‖b(x)‖ 6= 0
0 if ‖b(x)‖ = 0 (7)

where both a(x) and b(x) are vectors, umax is the max-
imum magnitude of the Euclidean norm of the vector
of manipulated inputs allowed by the constraints, and

K(x) = − a(x)+
√
a(x)2+(umax‖b(x)‖)4

‖b(x)‖2[1+
√

1+(umax‖b(x)‖)2]
.

3. PROPOSED APPROACH

Constructing the CLF with the largest possible ROA
for all possible states ends up with a small ROA in
general, thus limiting its application to practical problems.
Oftentimes, it is only necessary to guarantee stability for
certain operating regions. Motivated by this, this section
proposes a min-max approach to obtaining a Lyapunov
function given a subset of states, which we refer to “target
region.” Without loss of generality and for simplicity,
the target region, Ψ, can be defined as a polytope Ψ =
{x|Lx < c}.
The objective is to design a CLF and guarantee that its
ROA includes a target region. For simplicity, we assume
that there is no uncertainty in the system. In this case,
once the target region is in the ROA, the Lyapunov
theorem can guarantee the state always lies in the invariant
set. Since the CLF at least should be locally positive
definite, a simple choice is the symmetric matrix for P
in

V (x) = xTPx (8)

where P is a positive definite matrix. Hence, the following
optimization problem can be formulated to find V :

Problem 1

max
x,x̂

x̂TPx̂− xTPx

subject to inf
u∈<m

∂V

∂t
f(x) +

∂V

∂t
g(x)u > 0

x̂ ∈ Ψ

(9)

target region!

x1 

x2 

ROA1

ROA2

Fig. 2. Geometric illustration of Problem 1.

Solution to the Problem 1 yields the maximum difference
in Lyapunov function values of the states in the target
regions and the unstable states. Fig. 2 is a geometric
illustration of Problem 1. Given two matrices P1 and P2,
the stars represent the state point in {x|V (x) ≥ rmax}
for each ROA, respectively. If the maximum difference of
the CLF values is negative, this means the target region
is included in ROA (ROA2 in Fig. 2) because the value of
the CLF for any point outside the ROA is larger than that
of the target region. Hence, P that minimizes Problem 1 is
found by formulating the following minimax optimization:

Problem 1’
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min
P

Φ(P ) (10)

Φ(P ) = max
x,x̂

x̂TPx̂− xTPx (11)

subject to inf
u∈<m

∂V

∂t
f(x) +

∂V

∂t
g(x)u > 0 (12)

x̂ ∈ Ψ (13)
P > 0 (14)

where minimization is used to find a negative value of Φ.

As will be shown later, the constraint of Eq. (12) is
converted to an expression containing an absolute value
function. This makes the minimax optimization non-
differentiable, which is nontrivial to solve. Very few meth-
ods are suitable for this type of optimization problem.
Convex approximation of the min-max objective function
is proposed in Kiwiel (1987). This, however, cannot handle
the constraint of variable P . Reference variable methods
(Lu et al., 2008) and interior point algorithm (Rustem
et al., 2008) are shown to solve nonlinear minimax prob-
lems with constraints, but they both require the objective
function to be continuous and differentiable. Moreover, all
of these methods cannot handle the constraints in P and
x at the same time.

In summary, there are three issues that need to be ad-
dressed in solving Problem 1’ :

• Eq. (12) imposes constraints on both P and x, which
are difficult to handle with existing minimax opti-
mization methods.
• The inequality constraint Eq. (14) is also difficult to

handle. Usually, it should be transformed to n sub-
inequality constraints by Sylvester’s criterion.
• Because of the absolute operator in the constraint,

the derivative cannot be obtained (See Remark 2).

In order to handle the non-differentiable constraints, a
derivative-free optimization method based on a coordinate
search algorithm is proposed. In determining P , one of
the elements, Pij , is chosen as a variable to be determined
and its search space is computed (See Remark 3). After
an approximate Φ̃ is computed based on the old matrix, a
new value for Pij is selected and the max of the objective
function is evaluated to obtain xmax

0 and x̂max
0 . It is easy to

iteratively improve xmax
0 and x̂max

0 by calculating the upper
envelope of the old approximation and a new piecewise
function Φ̃k because the objective is piecewise linear in
Pij . If a new Pij yields significant decrease in the objective
value, the new Pij is chosen and another parameter in P
is searched for. The algorithm is terminated when there
is no further decrease in the objective value. With the
parameters denoted as Pl, l = 1, 2, . . . , n

2+n
2 , where n

is the number of states, the details of this approach are
described as follows:

Step 0: Set l = 1 and calculate the objective function
Φmin based on initial parameters.

Step 1: Set k = 1. Calculate the upper bound Pl and
lower bound Pl of Pl as in Remark 3. Approximate the
objective function in [Pl, Pl] as piecewise linear function
Φ̃k (See Remark 4). Let Φ̃ = Φ̃k and switch to a new
matrix P k by changing Pl only.

Step 2: Evaluate the function value Φ(P k) and obtain
the [xk, x̂k]:

[xk, x̂k] = arg max
xk,x̂k

[
(x̂TP kx̂− xTP kx) (15)

+λ inf
u∈<m

xTP k(f(x) + g(x)u)
]

where λ is the Lagrange multiplier.
If Φ(P k) < 0, stop the algorithm and set P = P k.
If Φmin −Φ(P k) > δ, where δ is a positive threshold,

set Φmin = Φ(P k), l = l + 1 and go to Step 1.
Step 3: Based on the current [x, x̂], compute the piece-

wise linear function Φ̃k in the interval of [Pl, Pl]. Then,
Φ̃ = max(Φ̃ ∪ Φ̃k) and q = minPl

Φ̃. If Φmin − q < ε,
where ε is a small positive value, let l = l+ 1 and go to
Step 1.

Step 4: Set k = k + 1 and

P k = arg min
Pl

[
λ inf
u∈<m

(xk)TP (f(xk) + g(xk)u) (16)

+((x̂k)TPx̂k − (xk)TPxk)
]

then switch to Step 2.

Remark 1: Since this algorithm cannot guarantee the
global optimum, the initial guess plays an important role.
In order to obtain a good guess, we suggest to use a
linearized model and solve the Riccati equation. For the
linearized model:

ẋ = Ax+Bu (17)
If the (A,B) is stabilizable, the Riccati equation, Eq. (18),
has a unique solution for a positive definite matrix Q.

ATP + PA− PBBTP +Q = 0 (18)
Although the stable region of the nonlinear system is
unknown, a local region near the equilibrium point is
stabilized by this method.

Remark 2: In Problem 1’, minimizing the objective
function with respect to the input u is also worthwhile
to discuss.

With the following input saturation constraints:
at 6 ut 6 bt t = 1, 2, . . . ,m, (19)

Because the constraint in Eq. (12) is linear in u given
x and multiplied by a negative coefficient, a bang-bang
control is adopted to enlarge the ROA. That is, the value
of input determined only by the sign of Pxg(x). The input
will take the minimum value and maximum value for the
positive and negative values of Pxg(x), respectively. Given
the input, Eq. (12) becomes

S = inf
u∈<m

Px(f(x) + g(x)u) (20)

= xTPf(x)− (bt − at)
2

m∑
t=1

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

xiPijgjt(x)

∣∣∣∣∣∣
+

(bt + at)
2

m∑
t=1

n∑
i=1

n∑
j=1

xiPijgjt(x)

The minimization is replaced by the absolute magnitude,
which is easily handled by any nonlinear programming
solver.
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Remark 3: In Step 1, the lower bound and upper bound
for each single parameter need to be computed. For any
off-diagonal element Pij that needs to be determined, the
following elementary operations can be used to transform
it to:

P̂ =

. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . Pij
. . . . . . Pij ˆPnn

 (21)

For the element Pii, it can be transformed to

P̂ =

. . . . . . . . . . . .. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . Pii

 (22)

Since elementary operations can keep the positive definite-
ness of P during the procedure, Cholesky decomposition
can be used as follows:

P̂ = LL′ =

L11 0 . . . 0
L21 L22 . . . 0
. . . . . . . . . . . .
Ln1 Ln2 . . . Lnn


L11 L21 . . . ln1

0 L22 . . . Ln2

. . . . . . . . . . . .
0 0 . . . Lnn

(23)

where L is a triangular matrix. From Cholesky-Banachiewicz
or Cholesky-Crout algorithm (see Golub and Loan (1996))
the following recursive formula for Li,j can be obtained.

Lij =
1
Ljj

(P̂ij −
j−1∑
k=1

LikLjk) i > j (24)

Lii =

√√√√P̂ii −
i−1∑
k=1

L2
ik (25)

Hence, for the element Pii, from Eq. (25), we have

Pii >

n−1∑
k=1

L2
nk (26)

For the Pij , at first, using Eq. (26)

Pii −
n−2∑
k=1

L2
nk > L2

n,n−1√√√√P̂nn −
n−2∑
k=1

L2
nk > Ln,n−1 > −

√√√√P̂nn −
n−2∑
k=1

L2
nk (27)

Notice that Pij = P̂n,n−1, then plugging (27) into Eq. (24)
and taking the place of i,j by n and n − 1, respectively,
which yields

j−1∑
k=1

LikLjk + Ln−1,n−1

√√√√P̂nn −
n−2∑
k=1

L2
nk > Pij (28)

and

j−1∑
k=1

LikLjk − Ln−1,n−1

√√√√P̂nn −
n−2∑
k=1

L2
nk < Pij (29)

Note that locating the elements to be optimized in the
right-most column and second-last row and its trans-
pose location using elementary operations, Cholesky-
Banachiewicz and Cholesky-Crout algorithms can be ef-
fectively used to find the bounds on the optimization
variables.

Remark 4: In general, the coordinate search has slower
convergence rate than the gradient method. However, in
the case of point-wise function Φ(P ), no derivative is
available and a large number of nonlinear constraints are
difficult to handle with such kind of approaches. Moreover,
note that fixing x and x̂ yields piecewise linear function
Φ(P ) with a single variable Pij . Thus, the objective
function for a single variable can be estimated by the
union of different x and x̂ values as shown in Fig. 3. This

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Pij

Φ̃

 

 

x1
x2
Approximation

Fig. 3. The upper bound of two lines is used to approxi-
mate the objective function.

estimate function can be described only by a few points
which is trivial to store and search, and it represents the
lower bound of the true objective function. For the purpose
of searching for a suitable Pij that decreases the objective
function, we only need to consider the points that lower the
current objective value. A good candidate is the minimum
point in this approximation which can be selected easily.

As shown in Fig. 4, the approximate function, Φ̃ is not
continuous due to the constraint in Eq. (12) that bounds
Pij for each [x, x̂]. The discontinuity point at the end of
the line L1 satisfying the following equation should not be
selected:

inf
u∈<m

Px(f(x) + g(x)u) = 0 (30)

As shown in Fig. 4, the current minimum point may be
located near the discontinuity point. In such a situation,
a neighbouring point is randomly selected to check the
objective function because the true value at the minimum
location may be very large.

Remark 5: Compared to grid-based approaches where
each state point on grids is used to check Eq. (2), the
proposed approach includes Eq. (2) using the maximum
operator in the objective function, thus reducing a large
number of constraints, especially for the high dimensional
case. However, for non-convex function with constraints,
it is difficult to evaluate its global extreme value using
existing nonlinear programming solvers. In such a case,
many initial guesses of x need to be tried to approach the
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0 2 4 6 8 10
−2
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8

10

Pi j

Φ̃

Minimum point

Randomly selected point

Fig. 4. The discontinuity in the estimated objective func-
tion.

optimal value as close as possible. Moreover, some points
in the target area, should be selected to randomly check
Eq. (2).

4. CASE STUDY

Consider a continuous stirred tank reactor example in
Mhaskar et al. (2006), whose model takes the form of:

ĊA =
F

V
(CA0 − CA)− k0e

−E/RTRCA (31)

ṪR =
F

V
(TA0 − TR) +

−∆H
ρCp

k0e
−E/RTRCA +

Qσ
ρCpV

(32)

where 0 < CA0 < 2 and |Qσ| < 0.0167 are two inputs. The
other parameters are shown in Table 1 where the subscript
s indicates a steady-state value.

Table 1. Parameters of the process model

V 0.1 m3 R 8.314 kJ/(kmol · K)
CA0s 1.0 kmol/m3 TA0s 310.0 K
∆H −4.78× 104 kJ/kmol k0 72× 109 min−1

E 8.314× 104 kJ/kmol Cp 0.239 kJ/(kg · K)
ρ 1000 kg/m3 F 0.1 m3/min
TRs 395.33 K Cas 0.57 kmol/m3

The control objective is to stabilize all the states in the
target region, 0.6 ≤ CA ≤ 0.62, 397.5 ≤ TR ≤ 398
and drive the system to the unstable equilibrium point:
TRs = 395.33 K, Cas = 0.57 kmol/m3. Linearizing the
process model and choosing the Q as the identity matrix
yields the solution of Ricatti equation as

P1 =
[

14.6402 0.8897
0.8897 0.1041

]
Fig. 5 shows that the entire target region is not included its
ROA. Given P1 as an initial guess, the proposed method
is applied to find the following new CLF:

P2 =
[

41.3275 1.5066
1.5066 0.0928

]
The ROA associated with P2 and the target region are
shown in Fig. 6. Notice that the parameter λ, which effects
the convergence of the final result, should be tuned very
carefully.

The control policy suggested in Eq. (7) is applied to
stabilize the point (CA, TR) = (0.61, 397.9) with CLF P2.

0.55 0.6 0.65
396

396.5

397

397.5

398

CA

T R

Target area
ROA

Fig. 5. The entire target region is not included in the ROA
of Lyapunov function 1

0.55 0.6 0.65
396

396.5

397

397.5

398

CA

T R

Target area

ROA

Fig. 6. The entire target region is included in the ROA of
Lyapunov function 2

0 1 2 3 4 5 6 7 8
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Time (min)

C A

Fig. 7. Close-loop response of CA

Figs. 7 and 8 show the state trajectories that converge to
the specified steady state. Figs. 9 and 10 show both inputs
are within the constraints.

5. CONCLUSION

In this work, a control Lyapunov function (CLF) design
method, which can stabilize specified state region for
control affine system with input constraints, is proposed.
The problem for obtaining such a CLF is formulated as
a minimax optimization problem and a derivative-free
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Fig. 8. Close-loop response of TR
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C A0

Fig. 9. Input trajectory: CA0

0 1 2 3 4 5 6 7 8
7
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3

2

1

0

1

2

3
x 10 4

Time (min)

Q

Fig. 10. Input trajectory: Qσ

optimization scheme is proposed to obtain the optimal
CLF starting from a simple initial guess.
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