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Abstract: Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its 

inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller 

especially with varying operating conditions, is a challenging task. This work focuses on the design of an 

explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four 

adsorbent beds separating 70 % H2, 30 % CH4 mixture into high purity hydrogen, the key controller 

objective is to fast track H2 purity to the set point value of 99.99 %. To perform this task, a rigorous and 

systematic framework is employed. First, a high fidelity PDAE based model is built to mimic the real 

operation and understand its dynamic behavior. The same model is also used to derive a linear 

approximate model by applying suitable system identification techniques. Then a model predictive 

control step is formulated for the reduced model where latest developments in multi-parametric 

programming are applied to derive a suitable explicit MPC controller. To test the performance of the 

designed controller and further refine the tuning parameters, closed loop simulations are performed 

where the PDAE model developed in earlier step act as virtual plant. Comparisons studies of the derived 

explicit MPC controller are also performed with conventional PID controllers. 

Keywords: PSA, multi-parametric MPC, advanced control, system identification, PDAE based models

 

1. INTRODUCTION 

PSA is one of the unit operations where invention occurred 

before the underlying theories behind it were fully 

understood. The Skarstrom cycle (Ruthven, 1994), one of the 

primitive PSA cycle, was invented in 1959 and involved only 

two adsorbent beds for separating air into pure oxygen or 

nitrogen. Since then the PSA technology has evidenced 

substantial growth in terms of size, complexity and 

versatility. A modern PSA plant can have more than 16 beds, 

interconnected through 100s of switch valves whose active 

states keep changing with time, making the real operation 

difficult to model and control. Studies on PSA control are 

quite scarce even though there is an ever increasing demand 

to improve the control methodology (Vinson, 2006). Model 

based predictive control (MPC) seems to be an appropriate 

control methodology for these highly complex, 

interconnected dynamic systems, which is the subject of this 

work.  

2. EXPLICIT/MULTI-PARAMETRIC 

PROGRAMMING FRAMEWORK FOR 

CONTROLLER DESIGN 

Fig. 1 outlines the systematic, rigorous and scientific 

framework pursued to perform this task. It starts with 

designing rigorous, first principle based, nonlinear dynamic 

(PDAE) model of the PSA system. In the next step, system 

identification techniques are used to derive a linear state 

space model from the nonlinear PDAE system model. 

Random pulses and step change signals are used to perturb 

the PDAE model for this purpose. Next, multi-parametric 

programming algorithms are employed along with the 

reduced model evaluated in the previous step to design the 

explicit/multi-parametric controller. As a final step, closed 

loop simulations are conducted to rigorously test the 

performance of the designed controller.   

 

 

Fig. 1. A framework for designing explicit/multi-parametric 
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Table 1: Overview of literature studies on PSA dynamic modeling (Z = Zeolite, AC = Activated carbon) 

 

2.1. PSA Mathematical Modelling  

In past, significant contributions to capture the PSA dynamic 

behaviour by first principle based models have been made; 

brief overview of which is shown in Table 1. In this work, a 

rigorous first principle based PDAE model of PSA is created 

in gPROMS. The model (Table 2) incorporates mass, 

momentum and energy balance equations for the gas-solid 

system. Adsorption dynamics is captured by multisite 

Langmuir adsorption isotherms. It also incorporates the axial 

dispersion in heat and mass transfer balances. Time varying 

boundary conditions, corresponding to each process step at 

both ends of the column are also modelled in detail to 

perform the PSA cyclic operation.  

Fig. 2. Four bed, multiple switch valve PSA configuration 

employed in this study 

 

Table 2. Key features of the PSA dynamic model 

 

Authors 
Feed 

Mixture 
PSA Cycle 

Adsorbent/Isot

herm 
Mass Transfer Heat Effects Pressure Effects 

Dispersive 

effects 

Valve 

modelling 

Yang and Doong 

(1985) 

H2/CH4, H2 

bulk 

separation 

1 bed, 5 

steps 

AC, Langmuir-

Freundlich 

Pore diffusion 

model 
Non isothermal No gradients 

Ideal plug 

flow 
No 

Farooq, et al. 

(1989) 

Air, O2 

production 

Skarstrom 

cycle 
Z,  Langmuir 

LDF (Linear 

driving force 

model) 

Isothermal 

No gradients, 

stays constant 

during adsorption 

& purge 

Axially 

dispersed 

plug flow 

No 

Rota and Wankat 

(1990) 
   

Various limiting 

cases of internal 

and external 

resistances 

Non isothermal 
Blake-Kozeny 

equation 

Ideal plug 

flow 
No 

Kumar 

(1994)/Kumar, et 

al. (1994) 

H2/CH4, H2 

purification 

4 beds, 

9steps 
Langmuir LDF Non isothermal Ergun’s equation 

Ideal plug 

flow 
Yes 

Warmuziński and 

Tańczyk (1997) 

H2 from 

coke gas 

PSA in 

series, 8 

steps 

Loading ratio 

Correlation 
LDF Non isothermal No gradients 

Axially 

dispersed 

plug flow 

No 

Yang and Lee 

(1998) 

H2 

purification 

from coke 

oven gas 

2 bed, 7 

steps 

Layered 

adsorbent - Z 

& AC, 

Langmuir-

Freundlich 

LDF Non isothermal Ergun’s equation 

Axially 

dispersed 

plug flow 

No 

Grande and 

Rodrigues (2005)  

Propane - 

propylene 

separation 

1 bed, 5 

steps 

Z, Multisite 

Langmuir 

Both internal 

and external 

resistances 

considered 

Non isothermal, 

separate 

equations for 

fluid, solid and 

column wall 

Ergun’s equation 

Axially 

dispersed 

plug flow 

No 

Ribeiro, et al. 

(2008) 

H2 

purification 

from  

H2/CH4/CO/

CO2/N2 

1 and 4 

beds, 

5cycle 

Layered 

adsorbent - AC 

& Z,  Multisite 

Langmuir 

Both internal 

and external 

resistances 

considered 

Non isothermal, 

separate 

equations for 

fluid, solid and 

column wall 

Ergun’s equation 

Axially 

dispersed 

plug flow 

No 
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Fig. 2 shows the four-bed PSA system considered for this 

particular study. Each of the four beds contains activated 

carbon as an adsorbent and it undergoes a cyclic operation 

comprising of nine process steps (Kumar (1994)), separating 

a 70% H2 and 30 % CH4 mixture into pure hydrogen. 

Furthermore, time duration of two process steps which can be 

actually varied by the user is assumed to be the same (and 

denoted as adsorption time in rest of the article). Appendix A 

provides the details of feed stream and geometrical design 

parameters of PSA system under study. 

2.2. System Identification 

Numerous open loop simulations are conducted with different 

types of input signals to perturb the system (PDAE), and 

consecutively linear models suitable for model based control 

purposes are extracted. Step change and random pulse signals 

are studied for this task where in particular, design of random 

pulse signals requires selection of two critical parameters; (i) 

selecting the maximum change to be allowed in signal 

amplitude from its base value. A very large change could 

perturb the system beyond the scope of fitting a single linear 

model. On the other hand, small changes do not disturb the 

system sufficiently to reveal its complete dynamic nature 

eventually, leading to poor model identification. (ii) Selecting 

the switching time for the pulse, i.e. the time for which the 

signal stays constant before switching to the new random 

value. Very high values of switching time produces input-

output behavior close to a step input change.  

 

In order to fix the first parameter, open loop experiments are 

performed with step signals of various step sizes, and a value 

of 3 seconds is finally selected. For the second parameter a 

well structured, closed loop simulations based approach is 

employed; wherein three random pulse signals are designed 

with the same magnitude (first parameter) but with different 

switching times, resulting in a library of reduced models. 

Furthermore, the best switching time is decided based on 

their closed loop performances which is discussed in the next 

section. 

 
Fig. 3. Input (adsorption time, TDEP)-output (purity) 

response with switching time of 20 cycles  

 

Fig. 3, for example, shows the input-output response for a 

signal with switching time of 20 cycles used with the 

MATLAB system identification toolbox. An 8
th

 order state 

space model (appendix C) provides the best fit for it and is 

thus chosen as the prediction model for MPC purposes. Its 

performance comparison with the PDAE model is shown in 

Fig. 4, for the last 500 cycles (of Fig. 3). Similarly, switching 

times of 5 cycles, 80 cycles are also studied. Moreover, 

conventional step input (infinite switching time) is also 

considered where adsorption time changes from 115 seconds 

to 55 seconds and only first few cycles data is considered for 

system identification, as purity response during this time 

forms an S shaped curve.    

 
Fig. 4. Plot showing the comparison of an 8

th
 order state 

space (SS) model response with the original PDAE model to 

the random signal used in Fig. 3. 

2.3. PSA model based control and validation 

The control objective, in this study is defined as fast tracking 

of hydrogen purity to set point of 99.99 %. Fig. 5 shows the 

long term variation of hydrogen purity with adsorption time 

obtained by performing simulations on the base case system 

(Appendix A).  

Fig. 5. Variation of PSA purity and recovery at cyclic steady 

state (CSS) with adsorption time 

Furthermore, Fig. 6 shows the short term response of 

hydrogen purity when a random pulse signal of adsorption 

time with switching time of 20 cycles is used to perturb the 

system. The instant response of system purity to adsorption 

time changes make adsorption time a suitable choice of input 

variable for purity control. 

 

Fig. 6. Short term time response of purity to changes in 

adsorption time 

It is also evident from Fig. 5 that changes in adsorption step 

duration not only affect product purity but product recovery 

as well. Clearly, adsorption step time should not go to very 

low values to avoid uneconomical (low recovery) operation. 
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Another important constraint on change in adsorption step 

time is the limited or fixed adsorbent capacity. When 

adsorption step duration increases or decreases, the amount of 

impurities entering the bed and getting adsorbed also changes 

accordingly. Since, a given amount of solid adsorbent can 

accommodate only a limited amount of impurities, a large 

increase in adsorption step time can saturate the bed and 

make it unsuitable for the future use. This means, that both 

high values of adsorption time and large changes in 

adsorption time should be avoided, while controller decides 

its action. A Model based controller, which incorporates the 

above mentioned operational constraints in its optimization 

framework is formulated in (1) to (4). Here, y is the control 

variable purity, and u is the manipulative variable, adsorption 

time. N and M represents the prediction and control horizon, 

respectively and k is a particular sampling instant. Sampling 

interval is taken as one complete PSA cycle. Also, N and M 

are fixed to values 4 and 2, respectively, and (2) is used for 

state estimation purposes. 

 

             (1) 

 

 

 

             (2)    

                                                                                             (3) 

             (4) 

               

An inherent feature of MPC controller is the online solution 

of optimization problem ((1) to (4)), as the state of system 

continuously evolves in time. The repeated online 

optimization procedure depending on the size of problem 

formulated could be a computationally intensive task. 

Furthermore, in some cases, for a given set of state variables 

the optimization problem could become infeasible and as a 

result controller gives an incorrect value of the plant input 

variable. In this work, novel multi-parametric methodology 

proposed by Pistikopoulos, et.al. (2000) are employed to 

overcome these popular limitations of MPC. With the 

application of multi-parametric programming techniques, the 

original optimization problem is solved offline, providing the 

control law in an explicit form, beforehand (Pistikopoulos et. 

al., 2007a, 2007b) it is implemented online.  

 

 
 

Fig. 7. Online implementation of an explicit/multi-parametric 

controller 

 

During the online operation, as shown in Fig. 7, the plant 

measurements are provided to the explicit/multi-parametric 

controller, which then searches for the critical region 

belonging to this particular state variable set and 

consecutively, extracts the corresponding control law. The 

computational work of evaluating the critical regions and the 

corresponding control laws is performed offline (apriori) and 

is stored for online use (later). For the reduced system 

represented in Appendix C (8
th

 order SS model), the multi-

parametric control framework formulates 11 parameters 

listed in Table 3. The table also shows the range for which 

each parameter is varied, where the last two variables are 

scaled variables with the following rule, y* = (y – 

0.9999)100000. 

 

Table 3. Range of parameters used in explicit/multi-

parametric controller formulation for switching time of 

20 cycles experiment 

 

x1 [-100 100] x5 [-100 100] u(k-1) [55 115] 

x2 [-100 100] x6 [-100 100] y* [-100 10] 

x3 [-100 100] x7 [-100 100] y
R
* [-0.1 0.1] 

x4 [-100 100] x8 [-100 100]   

 

Next, the MPC problem in (1) to (4) is reformulated as a 

multi-parametric QP problem, whose offline solution leads to 

7 critical regions when R is kept at a particular value of 30. 

The two dimensional projection of the 7 dimensional critical 

region polyhedral obtained by fixing all but first two 

parameters (Table 3) is displayed in Fig. 8.  

 
Fig. 8. Two dimensional slice of critical region (CR) 

polyhedral corresponding to SS model in Appendix C, N = 4, 

M = 2 and R = 30 

2.3.1. Closed Loop Validation 

To evaluate the performance of the designed controllers, PSA 

feed flow rate is step increased by 10 % from its design value 

and closed loop simulations are conducted with MPC tuning 

factor R (from (1)) varying from 0 to 180. The high fidelity 

PDAE model now acts as the virtual plant for performing the 

closed loop simulations. Fig. 9 compares the closed loop 

performance of a number of explicit/multi-parametric MPC 

controller configurations, where each line corresponds to the 

reduced models derived in the system identification step. 

Also, in these plots, to better understand and quantify the 

closed loop behaviour all closed loop simulation results have 

been concentrated in terms of two performance indicators.  

The first PSA control performance indicator, the controller 

response time is defined as the minimum number of PSA 

cycles required to permanently overcome the disturbance and 

bring the purity back to its set point of 99.99 %. The second 

performance indicator is the mean control effort (∆u) made 
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by the controller during the response time (first performance 

indicator). Maximum value of ∆u during the response time is 

also measured. Large value of this performance indicator 

highlights any violation of operational constraints on 

adsorption time changes mentioned earlier.  

 

Fig. 9. Closed loop performance comparison for various 

reduced models against two key PSA performance indicators  

From the plots, it is evident that increasing R slows down the 

controller response time while it decreases the mean control 

effort. This behaviour can be attributed to the particular type 

of objective function used in (1). It can also be observed that 

controller configurations built from random signals generated 

reduced models, provides better close loop performance than 

a simple step test generated reduced model. In particular, 

controller configuration designed from the reduced model 

with switching time of 20 cycles gives the best performance, 

as it (Appendix C) not only gives the least value of first 

performance indicator for a wide range of R but also keeps 

the second performance indicator under check. Furthermore, 

the best R value for this controller seems to be 30 as it 

provides the least value of the first performance indicator. 

Henceforth, this is the controller setting used for comparing 

explicit/multi-parametric MPC with conventional PID 

controller.  

2.3.2. Comparison with PID Controller 

To further assess and compare the strength of model based 

explicit/multi-parametric MPC controller with the 

conventional controllers, a PID controller is also designed. 

The systematic design procedure is as follows; (1) the 

autotuning method of Åström and Hägglund (Seborg, et al., 

1989) is used to evaluate the ultimate gain and ultimate 

period of the purity-adsorption time loop. (2) Next, these 

values are in turn used to derive the initial guess of PID 

tuning parameters namely, propotional gain, integral time and 

derivative time using the Z-N tuning relations. (3) These 

tuning parameters are further refined, till the best results in 

terms of the two PSA controller performance indicators, are 

obtained. The comparison results displayed in the first part of 

Table 4, highlights that model based controller is twice as fast 

the PID controller, which is a considerable improvement in 

terms of speed of response. The same results also show that it 

achieves this task by maintaining the control effort at lower 

values. To further evaluate the strength of explicit/multi-

parametric controller, the PSA system is perturbed with an 

impulse disturbance. During the simulations, the MPC and 

PID tuning parameters are retained at their respective best 

values as evaluated in the step disturbance study. 

 

Table 4. Multi-parametric MPC –PID comparison  

10 % step increase in PSA feed 

Controller 
Response Time 

(Cycles) 

Average ∆u 

(Seconds) 

Maximum ∆u 

(Seconds) 

MPC 13 0.6748 1.4090 

PID 25 0.8367 5.1183 

35 % impulse increase in PSA feed 

MPC 7 0.6619 1.5787 

PID 5 4.7156 12.1161 

Open Loop 9 
  

 

The comparisons of PSA controller performance indicators 

for both types of controllers are shown in Table 4. The 

disturbance this time is so fast that the open loop response 

settles down in nine PSA cycles. As a result, response time of 

PID and explicit MPC is almost same but the second PSA 

performance indicator for PID comes out to be much larger 

than the MPC. PID result shows that during the response time 

maximum ∆u is around 12 seconds. This is a large number 

and such a big change in adsorption time, as discussed 

earlier, can cause damage to the solid adsorbent. The model 

based control, on the other hand, provides a much better and 

safer response to the disturbance as shown in Fig. 10.  

 

Fig. 10. Closed loop comparison of MPC and PID controllers 

for impulse disturbance of 35 % in PSA feed 

3. CONCLUSIONS AND FUTURE WORK 

An explicit MPC controller is designed for a PSA system 

employing a systematic multi-parametric framework 

approach. The designed explicit MPC is also compared in 

detail with the current state of art PID controllers. In future 

studies, the effect of recovery-adsorption time dynamics will 

also be incorporated in the system identification process, 

making it more challenging but also explicitly incorporating 

the purity-recovery tradeoff in model based control 

framework. Ultimately, the controller design will be made 

robust to obtain better performance in presence of the 

operational noises.    
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Appendix A. Base case - PSA System 

Appendix B. Partial nomenclature for the dynamic model 

in Table 2 

𝐶𝑖  Gas phase molar concentration of 

species 𝑖 
mol/m

3
 

𝐶𝑉  Valve constant  

𝐶𝑃𝑖  Gas phase molar specific heat at 

constant pressure 

J/mol K 

𝐶𝑃𝑠  Solid phase mass specific heat at 

constant pressure 

J/Kg K 

𝐷 Bed diameter M 

𝐷𝑍𝑖  Axial mass dispersion coefficient for 

the species 𝑖 
m

2
/s 

ℎ Convective heat transfer coefficient 

between fluid and wall 

W/m
2
 K 

𝐾𝐿𝐷𝐹𝑖   LDF rate constant 1/s 

𝐿 Bed length M 

𝑃 Bed pressure Pa 

𝑄𝑖
∗ Adsorbed phase concentration in 

equilibrium with bulk gas for species 𝑖 
mol/Kg 

𝑄 𝑖  Volume averaged adsorbed phase 

concentration of species 𝑖 
mol/Kg 

𝑄𝑖
𝑚𝑎𝑥  Maximum adsorbed phase 

concentration in equilibrium with bulk 

gas for species 𝑖 

mol/Kg 

𝑅 Ideal gas constant (8.314) J/mol K 

𝑡 Time S 

𝑇 Gas or solid phase temperature K 

𝑇𝑊  Wall temperature K 

𝑈 Fluid interstitial velocity m/s 

𝑍 Axial position M 

ε Bed porosity  

λ Axial heat transfer coefficient W/m K 

𝜙 Dimensionless constant  

Appendix C. Best fit state space model matrices for input-

output response in Fig. 3. 

 

b’ = -0.009 0.0145 -0.0266 0.0207 0.041 0.0095 0.0208 0.0907 

 

c = 182.14 -8.4 -0.827 -0.189 -0.148 -0.052 0.089 0.034 

 

 

Feed pressure (bars)  7  Bed length (m)  0.445  

Blowdown pressure 

(atm)  

1  Bed diameter (m)  0.072 

Bed Porosity  0.4  Feed temperature (K)  303.15  

Feed flow rate 

(SLPM)  

8.5  No. of axial grids 40 

 0.995 -0.095 -0.001 0.000 0.001 -0.001 0.001 0.000 

 0.074 0.901 0.327 0.068 0.073 0.003 -0.010 -0.003 

 -0.063 -0.329 0.536 -0.289 -0.300 -0.085 0.032 0.089 

A =  0.002 -0.024 0.121 0.763 -0.658 0.208 0.100 -0.038 

 0.009 -0.029 0.358 -0.240 0.089 0.400 -0.040 0.011 

 0.000 -0.004 0.054 -0.014 -0.083 -0.793 -0.623 0.289 

 -0.002 0.001 -0.028 -0.052 -0.075 0.455 -0.604 0.668 

 -0.001 0.001 0.016 0.049 0.090 -0.191 -0.375 0.051 
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