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Abstract: Second-Order plus Time-Delay (SOPTD) models are commonly used to approximate
systems in order to tune PID controllers. Simple models are dominating for control design
in industrial applications. Several estimation techniques have been developed and applied to
controller design. Most estimation techniques are based on least-squares and excitations such as
step, square waves and pseudo-random signals. In order to speed up the experiments, simple and
short excitations have also been considered. In this paper alternatives are proposed to robustify
the estimates in order to obtain a better model around important frequencies. Simulation results
are presented to illustrate the techniques.
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1. INTRODUCTION

Estimation of First-Order-Plus-Time-Delay (FOPTD) mod-
els and Second-Order-Plus-Time-Delay (SOPTD) models
have received great attention due to the widespread use
of such models in techniques for tuning PID Controllers
(Junior et al. (2009)). Identification of dynamic transfer
function models from experimental data is essential for
model based controller design. Often derivation of rigorous
models is difficult due to the complex nature of chemical
processes. Hence, system identification is a valuable tool
to identify low order models, based on input/output data,
for controller design (Ramakrishnan and Chidambaram
(2003)).

Simple process models with at most three parameters
(Gain K, Time Constant T and Time-Delay L) are domi-
nating for control design in industrial applications (Ljung
(2002)). But FOPTD models are limited when the process
has under damped behavior or high order dinamics. This
way, SOPTD models can better describe these kind of
process. Certain higher order models when approximated
to a FOPTD model give negative time constant hence
second order model is necessary (Ramakrishnan and Chi-
dambaram (2003)).

It should be stressed that the true system may not have
the FOPTD or SOPTD structure. This means that a
model reduction is performed and the estimated model
only captures some aspects of the true system. Time-
domain techniques focus on the time response and lack
information on the model quality to account for stability
and stability margins. Relay techniques match the model
to the true system on the high frequency range (the
ultimate frequency), so that it may result in a model that
is not accurate in important low frequency ranges such
⋆ This work was supported by the CNPQ (National Counsel of
Technological and Scientific Development).

as in the vicinity of the cutoff frequency. Simple model
reduction techniques use the slowest dynamics to represent
the time constant and makes the time delay as the sum
of the faster dynamics (Åström and Hägglund (2006)).
An interesting model reduction technique is the half-rule
proposed in (Skogestad (2003)) which tries to distribute
the mid-range dynamics between the the time constant
and the time-delay.

There are a few methods to estimate parameters for these
models. Among them, one can mention the graphics and
the area methods (Åström and Hägglund (1995)). The A-
locus method witch uses the exact solutions for the limit
cycle frequency and amplitude from the relay feedback
system response to estimate the FOPTD and SOPTD
models parameters (Kaya and Atherton (2001)). In Majhi
(2007), the FOPTD and SOPTD models parameters are
determined solving at the most two non-linear equations
derived from the symmetrical limit cycle response of the
relay feedback experiment.

It is important that the identification experiment does not
take the process to a significantly different steady-state
operating point (de la Barra and Mossberg (2007)). In this
way, pulse testing would be preferred to step and ramp
testing. Attending mainly to the “minimal perturbation”
requirement, in Hwang and Lai (2004) it is presented
a two-stage algorithm to identity continuous-time delay
systems with nonzero initial conditions. In Wang et al.
(2005) the integration intervals proposed by Hwang and
Lai (2004) are manipulated to simplify the regression equa-
tions. In both methods, simple time-domain excitations
are used to set up identification experiments which disturb
process operation as little as possible. More recently, in
de la Barra et al. (2008) finite-duration pulses inputs
were used to identify FOPTD systems. Exact analytical
expressions for the Gain K, Time Constant T and Time-
Delay L were obtained from knowledge of two relative
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extrema in the transient pulse response. And de la Barra
and Mossberg (2007) proposed a method to identify the
parameters of a second-order model without delay based
on finite duration pulse response.

The relay feedback experiment have proved to be very
useful for system identification. It is possible to build
low order models in a relatively simples and fast way. In
Åström and Hägglund (1984) the relay feedback test is
used to generate sustained oscillations of the controlled
variable and to get the ultimate gain (Ku) and ultimate
frequency (ω180) directly from the experiment. Based
on these values, a PID controller can be tuned. Since
only Ku and ω180 are available, additional information is
required to calculate the three FOPTD model parameters
or the four SOPTD model parameters. In Åström and
Hägglund (2006), analytical expressions for estimating
FOPTD model parameters from gain ratio (κ), which is
the ratio of the system at the zero frequency and the
ultimate frequency, is presented.

In Srinivasan and Chidambaram (2003) a modified asym-
metrical relay feedback method was proposed to improve
estimates of the FOPTD model. Using a single asymmetri-
cal relay, additional equations to evaluate all the FOPTD
model parameters are formulated. The asymmetric relay
method requires an extra parameter (γ, the displacement
in the relay height) and whose value is to be selected ap-
propriately so that the calculation of the process gain and
the estimate of ω180 are carried out accurately (Shen et al.
(1996)). In Ramakrishnan and Chidambaram (2003), a
method to identify the SOPTDmodel parameters based on
the asymmetrical relay feedback experiment is proposed.
The idea is to combine the FOPTD identification methods
to estimate the four parameters of the SOPTD model.

Recently, a combined time/frequency domain FOPTD
identification technique based on a single excitation was
proposed in Junior et al. (2009). It was derived from a
time and a frequency domain methods which were also
proposed in Junior et al. (2009). The main feature of the
combined identification technique is to recover a model
which matches the time response while capturing the true
system dynamics around frequencies of interest. In this
paper, it is proposed an extension of that technique for
SOPTD models using a simple excitation. The existing
techniques are also revised. Several simulation results are
given to evaluate the techniques.

2. PROBLEM STATEMENT

Consider a SOPTD model characterized by

G (s) =
K

(1 + T1s)(1 + T2s)
e−Ls =

K

as2 + bs+ 1
e−Ls (1)

where K �= 0 is the system gain, L ≥ 0 is the time-
delay, T1 > 0 and T2 > 0 are the time constants and a
and b are the corresponding polinomial coeficients. The
problem addressed in this paper deals with the estimation
of the four parameters that characterize the model in
Eq. (1). The aim is to obtain a SOPTD model using a
unique excitation and that captures important true system
characteristics both in time and in frequency domains.

3. TIME-DOMAIN IDENTIFICATION TECHNIQUES

In this Section pulse based identification techniques (time-
domain) are revised.

Simple time-domain excitations are the step (the most
common simple excitation), the rectangular pulse and its
variants, the double rectangular pulse and the doublet
pulse (Åström and Hägglund (2006) and de la Barra et al.
(2008)).

Step Signal In many applications step responses are
used to estimate models. See Wang and Zhang (2001).The
advantages are that it is easy to generate, it gives a robust
estimation of the gain and the user can make a graphical
evaluation of the delay and time-constant. The limitations
are that it may take too long for slow systems and plants
with several loops. It may also be sensitive to disturbances
which may appear during the step duration.

Rectangular Pulses A rectangular pulse input can be
expressed as the difference of two step which are delayed
for the pulse duration D, i.e.

uP (t) = A [1(t)− 1(t−D)] (2)

where A �= 0 is the amplitude, D is the duration and 1(τ)
(unit step applied at time τ = 0).

A double rectangular pulse can be used to extract more
information as presented in de la Barra and Mossberg
(2007) and in de la Barra et al. (2008) for FOPTD and
second-order models. In Åström and Hägglund (2006) a
doublet pulse, proposed in Shinskey (1996) is employed to
estimate the model. In a similar way to the rectangular
pulse it can be thought to be formed by a combination of
delayed steps and similar equations can be obtained for
the FOPTD response.

The advantages of the rectangular pulses over the step
signal is that its duration is shorter and is less sensitive to
disturbances. The main disadvantage is that the signal ex-
citation is small to apply standard estimation techniques.

4. FREQUENCY-DOMAIN IDENTIFICATION
TECHNIQUES

In this Section the identification technique based on the re-
lay experiment presented in Åström and Hägglund (2006)
(frequency-domain) is revised.

Ziegler/Nichols frequency domain design techniques use
the process information around the ultimate frequency
for which the phase is 180o (ω180), usually generated by
a relay. Although a FOPTD or SOPTD model is not
needed to design the controller, it would be interesting
to obtain a model from such excitation to be used for
simulation and controller design. For a pure FOPTD
model, the knowledge of a frequency point and the gain
uniquely caracterizes the transfer function. In Åström
and Hägglund (2006), techniques for FOPTD models are
presented which uses a relay experiment plus an estimate
of the gain at the zero frequency. Notice that another
excitation should be used to obtain the system gain,
such as an asymmetrical relay. For the SOPTD models,
the relay experiment is combined with the step response
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to identify the four parameters solving iteratively the
equations.

In Ramakrishnan and Chidambaram (2003), the asymmet-
rical relay feedback experiment is used and a method to
identify the SOPTD model parameters is proposed. An
extra parameter has to be chosen, the asymmetry of the
relay. As the model gain is determined based on the DC
output level, three non-linear equations are solved for the
three remain parameters.

5. A SIMPLE IDENTIFICATION TECHNIQUE

In order to get a better model around lower frequencies
a different excitation is used. In this section a frequency
domain method is proposed. The main idea is to estimate
the model using an excitation that has contents at a couple
of frequencies.

5.1 The Excitation

Consider the excitation shown in Figure (1). The excita-
tion is assumed to be generated by a single relay from
which the critical time T is obtained. The relay is applied
for (N1+0.5)T . This part characterizes the high frequency
part of the excitation. After a short interval N2T with
zero output a rectangular pulse of width N3T/2 is applied
followed by another interval N3T/2 with zero output. This
characterizes the low frequency part of the excitation.
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Fig. 1. Proposed excitation - SOPTD response

The excitation can be used to match the model at the
desired frequencies related to the critical frequency ( π

T
).

This way, the identified model better match the true
system in a wider frequency region than the one based
only in the critical frequency.

It is necessary to determine the parameters N1, N2 and
N3. The parameter N1 is the number of periods of the
relay. Choosing N1 small makes the excitation shorter but
the power contribution at the high frequency point is also
small. This results in a poor model parameters estimations
at this point. Increasing N1 makes the excitation longer
but also increase the power contribution. This results in
a better model parameters estimations at this point. So,
there is a tradeoff between excitation duration and quality
of the model parameters estimations. The parameter N2

is the interval between the two parts, it is suggested

to choose a value that the output almost return to the
operation point before the experiment. The parameter N3

is the pulse period. This parameter is a multiple of the
critical period T , that is, the period of the first part of
the excitation. It is suggested to choose N3 = 3, so the
low frequency point is in the frequency range of interest
for control purposes. This frequency range is where the
process fase is between 90◦ and 180◦.

5.2 The Proposed Technique

The proposed technique uses more than one frequency
point to match the identified SOPTD model in a wider
frequency region of the true system. This is possible
because the excitation excites the system in a range of
frequency points. The data is collected for a time duration
tb long enough for the signal to return to the initial state.

Proposition 1. Consider a SOPTD model G (s). Define
|G(jωi)| and φ(ωi) as the system gain and phase at ωi,
respectively. Assume that G (0) and G(jωi) are estimated.
Define the relative gain at the frequency ωi

κ(ωi) =
|G(jωi)|
|G(0)| . (3)

Then, the SOPTD parameters can be computed as

â =
√
α1 (4)

b̂ =
√

α2 + 2
√
α1 (5)

L̂(ωi) = − 1

ωi

[

φ(ωi) + arctan

(

b̂ω

1− âω2

)]

(6)

K̂ = G (0) (7)

where α1 = a2 e α2 = b2 − 2a the solutions of the system
equation given by

{

ω4
1α1 + ω2

1α2=
1−κ2(ω1)
κ2(ω1)

ω4
2α1 + ω2

2α2=
1−κ2(ω2)
κ2(ω2)

(8)

It is importante to point out that this technique can
be applied to all the kinds of SOPDT models classified
based on the damping factor, say critically, under and over
damped. There is no restriction on the estimation values
of the polinomial coeficients a and b.

Proof. Define the relative gain κ as

κ(ωi) =
|G(jωi)|
G(0)

. (9)

The system gain is

|G(jω)| = K
√

(1 − aω2)2 + (bω)2
. (10)

Dividing by |G(0)| the Eq. (10) and taking the square, we
have

|G(jω)|2
|G(0)|2 =

1

(1− aω2)2 + (bω)2
= κ2(ω). (11)

Separating the terms
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κ2(ω)((1 − aω2)2 + (bω)2) = 1 (12)

κ2(ω)(1− 2aω2 + a2ω4 + (bω)2)) = 1 (13)

a2ω4 + (b2 − 2a)ω2 + 1=
1

κ2(ω)
(14)

a2ω4 + (b2 − 2a)ω2 =
1− κ2(ω)

κ2(ω)
. (15)

Using Eq. (15) and two frequency points information, we
can do

ω4
1α1 + ω2

1α2 =
1− κ2(ω1)

κ2(ω1)
(16)

ω4
2α1 + ω2

2α2 =
1− κ2(ω2)

κ2(ω2)
(17)

where α1 = a2 e α2 = b2 − 2a. Solving this system of
equations it is possible to find α1 and α2. Now write the
equation for the system fase defined as

φ(ω) = −ωL− arctan

(

bω

1− aω2

)

. (18)

Based on Eq. (18), the two frequency points, the system
fase at this two points and the polinomial coeficientes of
the system SOPDT model, the time delay is obtained by

L̂(ωi) = − 1

ωi

[

φ(ωi) + arctan

(

b̂ω

1− âω2

)]

. (19)

The system gain can also be computed as the ratio between
the integral of the deviations of the output and input given
by

K =

tb
∫

0

y(t)

tb
∫

0

u(t)

(20)

but this also an alternative because the system gain is
estimated using Eq. (7).

6. SIMULATION EXAMPLES

In this section the simple identification techniques are
applied to three systems listed in Table (1).

Table 1. Simulated Processes

System 1 G1(s) =
1

(10s+1)(s+1)
e−2s = 1

10s2+11s+1
e−2s

System 2 G2(s) =
1

(0.5s+1)3
e−4s = 1

0.125s3+0.75s2+1.5s+1
e−4s

System 3 G3(s) =
1

(2s−1)(0.5s+1)
e−0.5s = 1

s2+1.5s+1
e−0.5s

The cost function used to compare the estimates in time
domain is

ε =
1

N

N−1
∑

k=0

[y (kTs)− ŷ (kTs)]
2

where y (kTs) and ŷ (kTs) is the actual and estimated
process output, respectively. In frequency domain, the cost
function used to compare the estimates is

E =
1

Nω

Nω−1
∑

k=0

|G(jωk)− Ĝ(jωk)|

where Nω is the number of frequency points, G(jωk) is

the true system frequency response and Ĝ(jωk) is the
identified model frequency response.

6.1 System 1

The first system is a pure SOPTD model. The transfer
function estimates are shown in Table (2).

Table 2. Identification results for system 1

True system G1(s) =
1

10s2+11s+1
e−2s

Chindambaram2003 Gc(s) =
1.05

12.412s2+11.037s+1
e−1.814s

Frequency method Gf (s) =
0.9968

10.64s2+10.75s+1
e−2.065s

Applied the excitation, the system input and output used
in the estimation are shown in Fig. (2).
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Fig. 2. Proposed excitation applied for system 1

The relay oscillates with a period of 10.52 seconds, which
corresponds to a frequency of 0.596rad/s and a phase
of 2.919rad or 167, 32 degrees. The pulse width is 31.56
seconds, which corresponds to a frequency of 0.198rad/s
and a phase of 1.697rad or 97.28 degrees.

The frequency method uses the two points listed above to
fit the response from the low frequency region up to high
frequency region. The estimates for the time delay Lf for
each two frequency points is shown in Table (3). In this
Table, ωL is the low frequency point and ωH is the high
frequency point.

Table 3. Parameter estimates for system 1

ωL ωH

Lf 2.01 2.12

In table (4), the cost function values used to compare the
estimates in time and frequency domain (ε and E) are
presented.

Table 4. ε and E for system 1

Gc(s) Gf (s)

ε 0.0022 0.000029

E 0.0268 0.0107

The Nyquist diagrams for Gc(s) and Gf (s) are shown in
Fig. (3). The step responses for Gc(s) and Gf (s) are shown
in Fig. (4)
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Fig. 3. Nyquist diagram for system 1
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Fig. 4. Step response for system 1

6.2 System 2

The second system is a high order model. The transfer
function estimates are shown in Table (5).

Table 5. Identification results for system 2

True system G2(s) =
1

0.125s3+0.75s2+1.5s+1
e−4s

Chindambaram2003 Gc(s) =
1.005

0.202s2+1.113s+1
e−4.42s

Frequency method Gf (s) =
0.9997

0.279s2+1.16s+1
e−4.35s

The relay oscillates with a period of 10.68 seconds, which
corresponds to a frequency of 0.588rad/s and a phase of
3.141rad or 180 degrees. The pulse width is 32.04 seconds,
which corresponds to a frequency of 0.196rad/s and a
phase of 1.579rad or 90.51 degrees.

The estimates for the time delay Lf for each two frequency
points is shown in Table (6). In this Table, ωL is the low
frequency point and ωH is the high frequency point.

Table 6. Parameter estimates for system 2

ωL ωH

Lf 4.345 4.351

In table (7), the cost function values used to compare the
estimates in time and frequency domain (ε and E) are
presented.

Table 7. ε and E for system 2

Gc(s) Gf (s)

ε 4.071e−5 1.350e−5

E 0.0173 0.0122

The Nyquist diagrams for Gc(s) and Gf (s) are shown in
Fig. (5). The step responses for Gc(s) and Gf (s) are shown
in Fig. (6)
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Fig. 5. Nyquist diagram for system 2
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Fig. 6. Step response for system 2

6.3 System 3

The third system is an unstable open loop system. The
transfer function estimates are shown in Table (8).

Table 8. Identification results for system 3

True system G3(s) =
1

s2+1.5s+1
e−0.5s

Chindambaram2003 Gc(s) =
1

0.9673s2+1.51s+1
e−0.52s

Frequency method Gf (s) =
0.9991

1.007s2+1.488s+1
e−0.504s

In table (9), the cost function values used to compare the
estimates in time and frequency domain (ε and E) are
presented.

Table 9. ε and E for system 3

Gc(s) Gf (s)

ε 1.571e−6 1.011e−6

E 0.0043 0.0026

The Nyquist diagrams for Gc(s) and Gf (s) are shown in
Fig. (7).

6.4 System 4

The fourth system is the same of system 1 but adding
noise at the process output. The noise is Gaussian with
zero mean and variance of 0.005. Note that in this case the
relay histerese need to be configured. The transfer function
estimates are shown in Table (10). The values are close to
that obtained without noise. The method is robust to the
measurement noise.

Applied the excitation, the system input and output used
in the estimation are shown in Fig. (8).
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Fig. 7. Nyquist diagram for system 3

Table 10. Identification results for system 4

True system G1(s) =
1

10s2+11s+1
e−2s

Chindambaram2003 Gc(s) =
1.06

9.871s2+11.65s+1
e−2.04s

Frequency method Gf (s) =
0.9987

10.09s2+10.97s+1
e−2.01s
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Fig. 8. Proposed excitation applied for system 4

In Table (11), the cost function values used to compare
the estimates in time and frequency domain (ε and E) are
presented.

Table 11. ε and E for system 4

Gc(s) Gf (s)

ε 0.0024 0.00011

E 0.0288 0.0133

The Nyquist diagrams for Gc(s) and Gf (s) are shown in
Fig. (9).
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Fig. 9. Nyquist diagram for system 4

7. CONCLUSION

In this paper a proposed identification technique in the
frequency domain for SOPTD models was presented. The

excitation that was used has content around important
frequencies. The idea is to estimate a model which capture
the true systems dynamics around frequencies of interest.
The main disadvantage of the proposed excitation when
compared with other excitations such as relay is that
the experiment period is longer. But, in the other side,
the model is more accurate around the frequency range.
Simulation examples illustrated the capabilities of the
proposed technique.
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Åström, K.J. and Hägglund, T. (1995). PID Controllers:
Theory, Design and Tuning. Instrument Society of
America, Research Triangle Park, North Carolina, 2nd
edition.
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