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Abstract: In this paper, a new user-friendly platform for robust observer design is presented.
The aim of this software is to render the process of observer design as simple as possible for
process practitioners and researchers involved in control or supervision tasks. The platform is
dedicated to laboratory scale processes in which key variables are not directly measured and
therefore need to be estimated. Moreover, model mismatches and uncertainties can be potentially
recovered. The tool can also be used to analyze the feasibility of the related inverse problem for a
given choice of the sensors, the sampling time, the observation window, etc. making it a precious
tool to design the instrumentation of the process. A particularly useful feature for researchers
is the possibility to automatically generate a Matlab S-function that may be connected to the
user’s own control/diagnosis modules to perform the estimation task. The software is intended
to be freely available (by simple request) for research and educational purposes by mid 2010.

Keywords: Software Sensor; Moving-Horizon Observer; User-Friendly; Nonlinear Systems;
Optimization.

1. INTRODUCTION

Chemical and biological processes are generally charac-
terized by highly nonlinear dynamics that involve badly
known parameters. They also suffer from the lack of sen-
sors making the use of state observers mandatory.

While many analytic observer design methods are con-
ceptually available for nonlinear systems (Gauthier et al.
[1992], Slotine et al. [1987]), the need for structural proper-
ties that have to be satisfied by the system model tremen-
dously reduces the class of systems to which analytic
observers can be applied.

On the contrary, optimization-based observers (Michalska
and Mayne [1995], Alamir [1999]) that reconstruct the
state by minimizing output prediction error related cost
are particularly suitable as they enable complex modeling
as well as state constraint handling.
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typical working session is then detailed in section 3 in order
to describe the basic features of the software. This is done
using the example of a waste-water treatment process.

2. THEORETICAL BACKGROUND

clpp adresses systems that are governed by an Ordinary
Differential Equation (ODE) of the form:

ẋ= f(x, u, w) (x, u, w) ∈ Rn × Rnu × Rnw (1)

y = h(x, u, w) y ∈ Rny (2)

where x is the state vector, u is the vector of measured
inputs, w is the vector of unmeasured disturbances while y
is the measured output. In order to perform the estimation
task, clpp uses moving-horizon strategy (Michalska and
Mayne [1995]) in which the measurements collected during
the past observation horizon [t − T, t[ (where t is the
current time while T is called the observation horizon)
are used to recover the value of the unknown variables.
The latter are the state x0 = x(t− T ) at the beginning of
the observation horizon and the disturbance/uncertainty
profile w(·) over [t − T, t]. In order to define a finite
dimensional optimization problem, the user has to provide
a parametrization map:

[x0, w(τ)] = param(p, τ) for all τ ∈ [t− T, t] (3)

that gives a finite dimensional parametrization of the un-
knowns. Typically, the first n components of p are used
to represent the unknown states while the remaining com-
ponents are used to describe the temporal evolution of
w over [t − T, t]. To cite just an exemple, for ramp-like
temporal profiles of w, 2 · nw components may be used
to describe the evolution of w(·) over [t − T, t]. Note also
that discontinuous profile can also be used in which the
switching instants may be used as unknown parameter,
etc. See (Alamir [2008b]) for more details.

Based on the measurements that are acquired during the
time interval [t − T, t], an optimization problem can be
defined in the decision variable p. The cost function repre-
sents the difference between the predicted output and the
effectively measured values. More precisely:

J (t)(p) :=
ny∑
i=1

[ ∑
k∈Ki(t)

∣∣yi(tk)− ypi (tk|p)
∣∣2] (4)

where Ki(t) are indices of instants tk ∈ [t − T, t] where a
measurement of the component yi is available. The reason
for this rather non standard definition is that in real con-
text, the rates of acquisition of the different measurements
are never the same. ypi (tk|p) is the predicted output based
on the initial state and the disturbance profile given by
the parameter vector p through (3).

During each observer updating period [τj , τj+1] (where
τj = j · τo), a finite number q of function evaluations
are allowed in order to look for a minimum of the cost
function J (τj)(·) starting from an initial guess p+(τj−1)
that is compatible with the past estimate p(τj−1) leading
to the following updating process for the dynamic variable
p:

p(τj) := Sq
(
p+(τj−1)

)
(5)

where S denotes an iteration of some optimization al-
gorithm and Sq denotes successive iterations of S that
involves q function evaluations. In its current version, clpp
already implements several Gradient-free direct search al-
gorithms (Simplex, Torcszon, etc.). Such algorithms enable
non smooth inverse problems to be tackled, avoid asking
the user to provide analytical gradient or the numerical
troubles associated to the computation of the sensitivity
matrices.

Using the current value p(τj) in (3) gives the current esti-
mations x̂(τj − T |p(τj)) as well as the uncertainty profiles
ŵ(·|p(τj)) on [τj − T, τj ] which gives the estimation x̂(τj)
by integrating the system model (1).

Note that the cost function (4) is generally non convex
and the problem of avoiding local minima is crucial. In
order to enhance global convergence of the iterations, clpp
implements the singularity avoidance technique proposed
in (Alamir [2008a], Alamir et al. [2009]). Briefly speak-
ing, this technique involves iterations that switch between
several cost functions defined by:

J (t)
σ (p) :=

ny∑
i=1

[ ∑
k∈Ki(t)

φσ(tk) ·
∣∣yi(tk)− ypi (tk|p)

∣∣2] (6)

where
{
φσ(·)

}
σ∈{1,...,nφ}

is a family of weighting profiles.
The rationale behind this is that for all σ and in the
absence of measurement noise, the global solution is shared
by all the resulting cost functions. This makes it possible
to define an iterative scheme that exploits this property in
order to avoid potential accidental singularities.

3. A TYPICAL WORKING SESSION

In this section, a typical working session on clpp is de-
scribed in order to better understand the steps leading to
the observer construction. The problem of the simultane-
ous estimation of the state and the model parameters of
an activated sludge (Gomez-Quintero et al. [2000]) is used
as a support for illustration. It is needless to say that due
to the lack of space, only a very brief presentation of the
problem can be proposed here in order to concentrate on
the software presentation.

Note that clpp is a tool that generates model-based ob-
servation algorithm. Therefore, having a dynamic model
of the process is a precondition to the use of clpp. The
reduced model proposed in (Gomez-Quintero et al. [2000])
for the activated sludge process takes the following form:

ẋ= f(x, u, w) (x, u, w) ∈ R4 × R6 × R4 (7)

y = h(x, u, w) = (x2, x4) (8)

where x = (SS , SNO3 , SNH4 , SO2) in which SS is the
biodegradable substrate concentration, SNO3 is the nitrate
concentration, SNH4 is the ammonia concentration while
SO2 is the dissolved oxygen. The vector of inputs u gathers
many flow-rates and concentration related information
while the uncertainty vector w contains the unknown
model parameters that have to be identified on line. Only
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Fig. 1. clpp environment for the activated sludge simultaneous estimation problem

SNO3 and SO2 are measured leading to the measurement
vector y. It is worth noting that the above model is an
oversimplified model that has been precisely derived for
estimation purposes.

A typical clpp working session comprises the following
steps:

(1) Definition of the problem dimensions: n, nu, nw and
ny.

(2) Definition of the system’s ODE’s.
(3) Definition of the sensors physical laws.
(4) Definition of the parametrization map param invoked

in (3)
(5) Definition of the input profiles
(6) Simulation of the so obtained model. This steps

enables the user to check whether the dynamic system
is well defined by inspecting the state, output and
disturbance profiles for a given parameter vector p.

(7) Definition of the observer’s related issues such as
the observation horizon (T ), the optimizer (S), the
number of function evaluations (q) and the number
of weighting profiles (nφ).

Figure 1 shows a schematic view of the clpp environment.
The dialog box that is shown enables the problem’s dimen-
sions to be defined as well as the set of ODE’s governing
the system dynamics. The latter can be defined by clicking
on the differential equation button of the System dialog-
box (Figure 1). The window shown in Figure 2 is then
opened and the user can enter the C code of the ODE’s in
the body of the head-predefined function. Figure 2 shows
the ODE’s in the case of the activated sludge example (7).
Note that the lower window in Figure 2 is devoted to any
dependencies and/or constant declarations that may be

Fig. 2. C-program defining the system equations (7)

needed in the computation of the ODE’s.

Once the ODE’s are defined, the output laws can be
entered through the definition of the sensor blocks. Click-
ing on each sensor block (see Figure 1) opens a definition
window such as the one shown in Figure 3. Here again,
clicking on the Physical Output law button opens an
edition window in which a head-predefined C code of the
corresponding hi(x, u, w) can be inserted together with the
conversion rate and the acquisition rate that may be sensor
dependent.

The parametrization map param can be defined by click-
ing on the Π(p) button (see Figure 1). This opens the small
window depicted in Figure 4 in which the user first defines
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Fig. 3. Dialog-Box enabling the first output sensor to
be defined. Clicking on the Physical Output law
button opens a edition window in which a C code
of h1(x, u, w) can be inserted.

Fig. 4. Dialog-Box enabling the parametrization map
param [see equation (3)]

the minimum and maximum values of the unknown vector
p. Then by clicking on the parametrization button of this
windows, a head-predefined C-code window is opened en-
abling the user to include the script of the parametrization
map param involved in (3). For the particular activated
sludge problem, p is of dimension 8 with the first four
components standing for the unknown initial state while
the remaining components stand for the unknown param-
eters that are supposed here to be constant during the
observation horizon.

At this stage, clpp disposes of everything needed to
simulate the system model. This can be done by clicking on

Fig. 5. Dialog-Box of the simulate button. This enables
a simulation to be performed in order to check the
model and sensors definitions.

Fig. 6. Example of simulation plots. The plotting options
can be customized using the dialog-box of the plots
button

the simulate button depicted on Figure 1. This opens the
dialog box shown in Figure 5 where the simulation time,
sampling period and the value of the parameter vector p
can be entered by the user. Note also that by checking
the Export Data check-box, the simulation results can be
saved in text file for further use with more elaborated
graphical softwares. Note however that some aspects of
the plots can be customized using the dialog-box of the
plots button of Figure 1.

The definition of the observer parameters T and the differ-
ent weighting curves φσ(·) used in the singularities avoid-
ance technique depicted above can be done by clicking on
the CLP2 box of Figure 1. The corresponding dialog-box
is shown in Figure 7.

At this stage, the observation algorithm can be tested by
clicking on the Test button of Figure 1. This opens the
test dialog box (see Figure 8) in which the user can define
the number of function evaluations and the initial value
of the parameter vector p. Typically, this values must be
different from the values used to produce the simulation in
order to check the convergence of the estimation scheme.
The Solver Settings button of the Test dialog box enables
the solver and its parameters to be chosen by the user
as depicted in Figure 8. This includes the observation
window, the optimization algorithm and its parameters
(initial trust region, minimum step, etc.)

Pressing on the OK button of the Test dialog box (see
Figure 8) opens the plot window where the estimation re-
sults are shown together with a dynamic window showing
the evolution of the cost function during the iteration (see
Figure 9). At each sampling instant, the observer window
is shifted and any new available measurement that might
have been acquired since the last sampling instant are
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Fig. 7. Dialog Box of the CLP2 block of Figure 1. This
enables some the optimization options to be chosen
for the observation algorithm.

Fig. 8. Dialog Box of the Test button of Figure 1. This
enables the observation horizon T and the weighting
curves φσ to be defined by the user.

Fig. 9. The observer test view. The evolution of the
estimated trajectories over the observation window
is shown for the state, output and the disturbance
vectors. The dynamic evolution of the value of the
cost function is also displayed in the central window.

taken into account in the computation of the new cost
function.

Figure 10 shows the results of the simultaneous state and
parameter estimation for the activated sludge example.
Note that this set of plots is realized using Matlab graph-
ical tools using the data files that have been designated
to export the session results. This can be done using the
Export data check-box of the Test window (see Figure 8).

Fig. 10. Validation results for the simultaneous
state/parameter estimation of the activated sludge
problem. This is a four state/ two measurement
problem with 4 unknown parameters that are
modeled in CLPP as constant disturbances to be
estimated.

4. FURTHER ISSUES

4.1 Measurement Handling

In this section, the term measurement concerns both the
input and the output measurements. One of the nice fea-
tures of clpp is the ability to handle non synchronized
measurements acquisition which is a quite recurrent sit-
uation in process industry. Indeed, some measurements
need post-processing protocoles that are time consuming
resulting in long time periods between two successive
measurement availabilities. Moreover, since some of such
operations involve human intervention, this leads to a non
uniform sampling time.

clpp offers two modes of measurement acquisition during
the prototyping phase:

(1) Internal acquisition mode

In this mode, the measurements that are generated
during the simulation phase are used in the observer
test phase. Note that in this case, the acquisition
rate for each measurement is defined by the acquisi-
tion rate parameter of the corresponding sensor (see
Figure 3). Note that when using this mode, it is
still possible to use different models for the observer
and the simulation by including additional non zero
uncertainty components in the uncertainty vector w
for which the search domain used by the observer is
{0}.

(2) External acquisition mode
In this mode, the measurement data are given by text
files data.txt having the following structure:

%==============
% File Name
%==============
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Fig. 11. infeasibility detection of a particular inverse prob-
lem of simultaneous state and parameter estimation
of hydrogen production model proposed in Fouchard
et al. [2009]

n1 t1 v1
n2 t2 v2
. . .
ni ti vi
. . .
nf tf vf
%==============

where ti ≤ ti+1 are the instants where acquisition
of at least one measurement is performed. ni is
the corresponding sensor number while vi is the
measurement value. A major advantage of this mode
is that experimental acquisition can be used that are
not generated by any mathematical model. clpp can
then be used to validate the integrated scheme of both
a model and its corresponding observer.

4.2 Observability/Identifiability Analysis

In addition to its use for robust observer design, clpp is a
precious tool when one needs to study the feasibility of the
corresponding inverse problem. As an example, Figure 11
shows the results of a simultaneous state and parameter
estimation of a recently proposed hydrogen production
model with Chlamydomonas reinhardtii (see Fouchard
et al. [2009]). This is a typical situation where it is obvious
that the inverse problem is, at least badly conditioned if
not unfeasible. Indeed, the plots show that the predicted
outputs are almost identical to the measurement (over
the observation horizon) while the initial states at the
beginning of the observation window are quite different.
User may now increase the observation horizon or check
different kind of measurement, etc.

5. CONCLUSION

In this paper, the software clpp, a user-friendly software
for fast prototyping of robust nonlinear observer is de-
scribed. The technical difficulties are made transparent to
the user. The latter has to feed the model equation, the

sensor equation as well as high level parameters such as
the observation window, the maximum number of function
evaluation, etc. Different and/or irregular measurement
acquisition rates can be handled. Once the observer is
calibrated, the designed solution can directly be used in
a Matlab/Simulink observer block for further use in diag-
nosis and/or control purposes.
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