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Abstract: The need for economic efficiency and safety has driven the development of large
and complex chemical plants. Due to the presence of interactions, controlling such plants are
often difficult. This paper aims to address this issue by developing a networked-based process
control approach. In this framework, a plantwide process is modeled as network of process units
which is controlled by a network of autonomous controllers. The controllers within the network
operate with different sampling rates and communicate with each other asynchronously, to
allow flexibility and better utilization of communication bandwidth. A key feature of controller
network is the connective stability among controllers, which ensures plantwide stability when
communication problems such as data packet drop-outs occur. Using the concept of dissipativity,
plantwide connective stability and global performance is translated into conditions for which
each controller has to satisfy. The controllers are then designed individually to form an
autonomous and distributed control system.
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1. INTRODUCTION

Modern chemical plants are large and complex. Many
of these plants consist of more than a hundred process
units and require thousands control loops. Due to the
wide use of material recycle and heat integration, there
are often strong interactions among process units that
profoundly complicate the plantwide process dynamics. As
a result, the application of conventional control techniques
(e.g. centralized and decentralized control) becomes ex-
pensive, difficult and inadequate. To address these issues,
this paper adopts a plantwide process control framework
developed in Xu and Bao (2009). A complex plant is
modeled as a network of interconnected process units
(known as process network), which is controlled by a
network of controllers (known as distributed controllers).
Within the controller network, each controller not only
exchanges information with other controllers, but also
provides local control action based on its local measure-
ments and information received from other controllers.
This form of control network representation is different to
the existing work in NCS (Networked Control Systems),
which is focused on the communications between sensors,
actuators and controllers. Detailed discussions on NCS
can be found in Baillieul and Antsaklis (2007); Tian and
Levy (2008). The proposed controller network can have
arbitrary topologies and is very flexible where a variety of
control network configurations can be implemented.

The work in this paper extends the above framework
and develops an asynchronous control and communication
network approach that ensures connective stability. The
communication network between controllers often expe-
riences issues such as data packets drop-out that may
affect the stability of plantwide process. To overcome these

problems, the condition known as plantwide connective
stability is derived and incorporated in the control de-
sign framework. This condition ensures the stability of
plantwide systems when one or more communications links
between controllers is/are lost. The development of an
asynchronous communication network is particularly use-
ful in network-based control applications where controllers
are able communicate at different rates. This allows faster
information broadcast rates to be assigned to controllers
for process units with smaller time constants and/or larger
interaction effects. In doing so, it ensures better utilization
of the network bandwidth. Apart from the asynchronous
communication, each controller within the network pro-
vides control action to its respective unit at different
rates. This feature is important to large scale chemical
plants where each process unit possesses very different
dynamics. As such, it would be ideal and economically
beneficial if these units are asynchronously controlled. For
example, a reactor often has faster dynamics compared to
a distillation column and should be sampled and controlled
at a higher rate than the latter process. Through this
formulation, the control system becomes more scalable,
autonomous and reliable.

It has been shown (Xu and Bao (2009)) that interactions
between process units are best captured by the physical
mass and energy flow. Therefore a similar network devel-
opment is used in this paper. Due to the different rates
used for control and communication, the overall plant
model is generally time-varying. To accommodate this
asynchronous nature of the plant, a time invariant refor-
mulation is required where a common “time-window” (e.g.
the least common multiple, lcm, of all control/sampling
and communication time periods) is selected to allow the

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoMT3.3

Copyright held by the International Federation of Automatic Control 85



overall plant model to be T-periodic. This reformulation
is known as lifting and has been described in Colaneri
et al. (1990); Chen and Qiu (1994); Chen and Francis
(1995). Under each T time period, the plantwide process
is described as a network of sub-models where each model
describes the dynamics of its respective process unit at
a particular time instant within T . Time-varying local
controllers in the network will provide the control action to
each sub-model at different time instant. The networked
control problem is then converted into one that can be
solved in a decentralized fashion.

The paper is organized as follows. Section 2 presents de-
tailed modeling of process and control networks of pro-
cesses with asynchronous control and communication. The
framework for controller network design based on discrete-
time dissipativity is described in Section 3, followed by a
conclusion in Section 4.

Notations

For any kT where T is a sampling period, denote a
lifted signal ui(k) =

[
ui(kT ) , . . . ,ui(kT +NiTi)

]
where

T = (Ni + 1)Ti, ∀i = 1, . . . , N . Then denote u(k) =[
u1(k), . . . ,uN (k)

]
. Denote the i-th element of a block

diagonal constant matrix K and the (i, ℓ)-th constant block
matrix of G associated at j-th sampling instant e.g.Ki(jTi)
and Giℓ(jTi), as Ki·j and Giℓ·j respectively. On the other
hand, the i-th element of a block diagonal system P and
the (i, ℓ)-th block of P̃ at j-th sampling instant are denoted

as P i·j and P̃iℓ·j respectively. A diagonal matrix made up
of Ni repeating Gi is represented by rep

1,...,Ni

Gi. We denote

G(i) corresponding to the mi block rows of G where G is
a m× n matrix and m = [mT

1 ,m
T
2 , . . . ,m

T
N ]T .

2. PROCESS AND CONTROL NETWORKS WITH
ASYNCHRONOUS CONTROL AND

COMMUNICATION

In this networked process control approach, each process
unit is modeled as a two-port system that describes the
relationship between the input and output physical and
information flow (Xu and Bao (2009)). Physical flows,
represented by extensive variables such as energy, mass or
molar flowrate, are flows that interconnect process units to
form a process network. These flows are unique features of
chemical processes and is often neglected in most process
control approaches. Information flows, on the other hand,
are made up of measured and manipulated variables that
are used to form the control loops. The process network is
controlled by a controller network made up of individual
local controllers that are similarly modeled as a two-
port system. These controllers not only responds to its
local sensor output but also the information received from
other controllers. In this section, the above representations
of process and control networks are extended to a form
suitable for discrete time control network synthesis.

The dynamics of each process unit P i with a sampling
period of Ti, where Ti (i = 1, . . . , N) are positive integers
is represented as follows:

 xi(jTi + Ti)
yip(jTi)
yic(jTi)

 =

 Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 Di
22

  xi(jTi)
ui
p(jTi)

ui
c(jTi)

 (1)

where yip(jTi) ∈ Rnypi , ui
p(jTi) ∈ Rnupi represent the

respective physical mass/energy flow leaving from and
coming into P i, yic(jTi) ∈ Rnyci and ui

c(jTi) ∈ Rnuci

describe the information flow coming to and leaving P i

respectively and xi(jTi) ∈ Rmi is the state vector. In
a first principle model, yip(jTi) and ui

p(jTi) are extensive

variables and yic(jTi) and ui
c(jTi) are intensive variables.

In this paper, we study the problem of state feedback
distributed control where Ci

2 = I, Di
21 = Di

22 = 0 in (1).
Each controller Ci at jth sampling instant is represented
as follows:

Ci :


[
ûi
c(jTi)

ũi
c(jTi)

]
=

[
Ki

1

Ki
2

]
yic(jTi)

ui
c(jTi) = ûi

c(jTi) +

ℓ2∑
n̄=ℓ1

ũn̄
c (jTn̄),

∀i ̸= ℓ1, ℓ2 = 1, . . . , N

(2)

where Ki
1 ∈ Rnuci×mi and Ki

2 ∈ Rnũci
×mi are controller

gain matrices. Vectors ûi
c(jTi) ∈ Rnuci and ũi

c(jTi) ∈
Rnũci represent the intermediate control signal and infor-
mation sent out to other controllers respectively. Variables
ui
c and yic denote the local sensor output and controller

output respectively. The local controller output, ui
c(jTi) is

calculated based on information received from its sensor
output ( yic(jTi)) and information from other controllers.

Using the above the representations, the following issues
will occur in networked plantwide process control:

• Asynchronous control - Due to the different dynamics
each process P i possesses, it is beneficial for the
different units within the plant to be controlled at
different rates.

• Asynchronous communication - To ensure the better
utilization of the bandwidth within communication
networks, it is useful that each controller, Ci, within
a controller network communicates information at
different rates

To facilitate the development of an asynchronous control
and communication process and controller network, a new
time window T (defined as plantwide system period) is

selected to account for the use of different Ti and T̃i. This
ensures that the dynamics of each process and controller
at different time instants within is T is captured and
representative at every T . A suitable T can be found as
follows:

T := lcm{T1, T̃1, . . . , TN , T̃N} (3)

Using the plantwide system period T , the process and
controller networks are defined as follows.

Process Network . Within every T , each i-th process
in (1) sends out (i.e. yip and yic) and receives (i.e. ui

p and

ui
c) signals (Ni + 1) = T

Ti
times. Using constant matrices

Hiℓ
p , the input-output relationship of physical flow between

between the i-th process and N processes at a every T (i.e.
T ≤ T + ϵTi < 2T, ∀ϵ = 0, 1, 2, . . . ,Ni), can be defined as
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ui
p(ϵTi) =ui

e(ϵTi) + dip(ϵTi)−
N∑
ℓ

ℓ ̸=i

Nℓ∑
j=0

Hiℓ·j
pϵ

yℓp(jTℓ) (4)

where

Hiℓ·j
pϵ

:=

{
Hiℓ

p Tℓ ≥ (j + 1)Tℓ − ϵTi > 0,

0 otherwise

Note that Hiℓ
pϵ

=
[
Hiℓ·0

pϵ
, . . . , Hiℓ·N̄ℓ

pϵ

]
and Hiℓ

p =
[
HiℓT

p0
, . . .

, HiℓT

pN̄i

]T
. The elements of Hiℓ

p with appropriate dimen-

sions are between 0 and 1(inclusive), whereHiℓ
p = I implies

that the ℓ-th process is connected to the i-th process
while Hiℓ

p = 0 implies no physical connection between

the them. When the values of Hiℓ
p is between 0 and 1, it

implies that the physical output of the i-th process is split
prior to flowing into the ℓ-th process and the value in Hiℓ

p

represents the split ratio of the i-th unit. Here ui
e ∈ Rnupi

and dip ∈ Rnupi represent the external physical flow and
input disturbance in the physical flow into the i-th process.

Controller Network . Within each T time period, each
Ci in (2) receives information from both its local sensor
output and other controllers and sends out a controller
output to its respective process every Ti period. The con-
troller, Ci, then sends out information to other controllers
every T̃i period, which is equivalent to (Ñi + 1) = T

T̃i

times within every T . Introduce block matrices Hiℓ
c , i ̸=

ℓ,∀i, ℓ = 1, . . . , N to describe the information exchange
paths between controllers, the controller output ui

c of Ci at
a time instant ϵTi within T can be represented as follows:

ui
c(ϵTi) =ûi

c(ϵTi) +

information received from other controllers︷ ︸︸ ︷
N∑
ℓ

ℓ̸=i

Ñℓ∑
j=0

Hiℓ·j
cϵ ũℓ

c(jT̃ℓ)

(5)

where

Hiℓ·j
c :=

{
Hiℓ

c T̃ℓ ≥ (j + 1)T̃ℓ − ϵTi > 0

0 otherwise

Similar to each Hiℓ
p , Hiℓ·j

c =
[
Hiℓ·jT

c0 ,Hiℓ·jT
c1 , . . . , Hiℓ·jT

cÑi

]T
where Hiℓ·j

cϵ =
[
Hiℓ·0

cϵ ,Hiℓ·1
cϵ , . . . ,Hiℓ·Ñℓ

cϵ

]
. Note that Hii

c =

0,∀i = 1, . . . , N . Matrices Hiℓ
c which have elements of 1

or/and 0 is partitioned vertically into Nℓ sub-matrices,
where Nℓ are the number of controllers Cℓ sends infor-
mation to. If the Ci receives information from the ℓ-th
controller(i ̸= ℓ), then the sub-matrix ofHiℓ

c corresponding
to ũℓi

c is matrix I. Otherwise this sub-matrix is a zero
matrix. MatricesHiℓ

c is used to describe the topology of the
controller network while matrices Hiℓ

c is used to represent
the network topology within every T based on the effects
of asynchronous communication among controllers.

Through this formulation, the parameters (i.e. controller
gains) for each Ci are time varying within T but they
remain the same for every T period.

The above descriptions of the process and controller net-
works have the following key features:

P̃ N.NN

P̃ 1.2

P̃ 1.1q p

zdp

M̃

Fig. 1. M̃ - P̃ system

• From the process network description, the network
topology is separated from the models of individual
process units. This makes plantwide modeling sim-
pler and less complex since individual plant models
can always be derived using first principle modeling
approaches.

• The process network topology can be directly ob-
tained from a process flow diagram.

• An arbitrary topology for controller network can be
used in the proposed approach. This allows flexibility
in choosing a controller network that offers a good
balance between complexity of the network and con-
trol performance.

• For given model of each process unit and controller
in (1) and (2) and the network topology in Hiℓ

p and

Hiℓ
c , the formulation of matrices Hiℓ

p and Hiℓ
c in (4)

and (5) can be easily implemented on any program-
ming platforms. This made the description of such
networks more systematic and computer friendly.

3. CONTROLLER NETWORK DESIGN

Given the representations for both the processes and con-
trollers, the proposed controller network design can be im-
plemented. The control design framework is implemented
in two steps. First, the plantwide connective stabilizability
problem is solved. The second step then involves designing
each controller independently. This framework requires the
controller network problem to be solved at every T period
using the lifted signals.

3.1 Framework

Prior to designing each controllers, the process and control
networks described in the previous sections are first con-
verted into a form suitable for stability and performance
analysis. A typical form is shown in Fig. 1, which repre-
sents a linear fractional transformation (LFT) of systems

M̃ and P̃. The control performance is represented by
the H∞ norm from dp to z, which are lifted signals. In

Fig. 1, M̃ includes the topologies of both process and
controller networks captured by matrices Hiℓ

p and Hiℓ
c

and the performance specifications while system P̃ =

diag
i=1,...,N

{
diag

j=0,...,Ni

P̃i·j
}

where each P̃i·j is a LFT of the
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i-th “virtual” process unit P i·j
υ and its “virtual” controller

Ci·j
υ at kT + jTi time instant. The input to P̃i·j carries the

information related to physical flow from other process
units to the i-th process unit and information received by
the i-th controller from other controllers at different time
instants within T . The output of P̃i·j carries information
on the state variables of the local process and the infor-
mation sent from its controller at jTi sampling instant.
System M̃ has the following state space representation: xm(kT + T )

zw(kT )
p(kT )

 =

[
Am Bm1 Bm2

Cm1 Dzw Dzp

Cp Dpw Dpq

]
︸ ︷︷ ︸

M

 xm(kT )
dp(kT )
q(kT )

 (6)

where q(kT ) and p(kT ) are interconnection signals for

systems M̃ and P̃. The state space representation of each
P̃i·j within T is as follows:[

xi
p(jTi + Ti)
qi(jTi)

]
=

[
Ai·j

cℓ Bi·j
cℓ

Ci·j
cℓ Di·j

cℓ

] [
xi
p(jTi)
pi(jTi)

]
(7)

with system P i·j
v described by: xi

p(jTi + Ti)
qi(jTi)
yi(jTi)

 =

Ai·j
p Bi·j

p Bi·j
u

Ci·j
q Di·j

qp Di·j
qu

Ci·j
y Di·j

yp Di·j
yu


︸ ︷︷ ︸

Pi·j

 xi
p(jTi)
pi(jTi)
ui(jTi)

 (8)

and Ci·j
v :

ui(jTi) = Ki·j
p yi(jTi) (9)

Consider the following performance specifications:

(1) Disturbance attenuation. This relates to the system
Tyd(z) from input disturbance to the physical flow
dp to measured process output y

c
.

(2) Control gain constraint. This relates to the system
Tud(z) from dp to the controller outputs uc.

Both specifications can be represented by the upper bound
γ > 0 of the following weighted H∞ norm:∥∥∥∥W1Tyd

W2Tud

∥∥∥∥
∞

< γ. (10)

where W1 = diag
i=1,...,N

{
diag

j=0,1,...,Ni

W i·j
1

}
and W2 =

diag
i=1,...,N

{
diag

j=0,1,...,Ni

W i·j
2

}
.

Theorem 1. Assume constant productions rates (i.e. ue =
0). For an asynchronous control and communication net-
work of process systems, Pi (i = 1, . . . , N), and state-
feedback controllers, Ci (i = 1, . . . , N), with matrices
Hiℓ

p and Hiℓ
c and weighted performance specifications de-

scribed in P1 and P2, it can be represented by the system
shown in Fig. 1. Then the state-space representation of
system M̃ is as follows:

xw1
(kT + T ) = Aw1xw1

(kT ) +Bw1x(kT )
xw2

(kT + T ) = Aw2xw2
(kT )
+Bw2 (ûc(kT ) +Hcũc(kT ))

zw1
(kT ) = Cw1xw1

(kT ) +Dw1x(kT )

zw2
(kT ) = Cw2xw2

(kT )
+Dw2 (ûc(kT ) +Hcũc(kT ))

y
pp

(kT ) = Hcũc(kT )

upp(kT ) = Θdp(kT )− ϕbx(kT ) + ξb (ûc(kT ) +H)

with W1 := (Aw1 ,Bw1 ,Cw1 ,Dw1), W2 := (Aw2 ,Bw2 ,
Cw2 ,Dw2) and

Θ = B1 −B1Hp(I +D11Hp)
−1D11,

ϕ = B1Hp(I +D11Hp)
−1C1,

ξ = B1Hp(I +D11Hp)
−1D12

which both ξ and ϕ can be similarly reduced to

ξ = diag
i=1,...,N

{
diag

j=1,...,Ni

ξii(j, j)

}
︸ ︷︷ ︸

ξa

+(ξ − ξa)︸ ︷︷ ︸
ξb

(11)

and where ξii(j, j) is described as the (j, j)-th component
in ξii. Lifted signals xw1

(k) and xw2
(k) represent the

states that are associated with weighting function W1

and W2 respectively. Lifted zw1
(k) and zw2

(k) represents
the measured process output and the controller output
respectively. Furthermore, we define new variables y

pp
(k)

and upp(k) as new variables. Constant matrices Θ, ϕ
and ξ are introduced to simplify the representation of
the theorem. Matrix H vertical concatenate the infor-
mation received by the i-th controller from all ℓ-th con-
trollers (∀ℓ = 1, . . . , N). By assigning xm = xw, pi(kT +

jTi) =
[
yi

T

pp(kT + jTi), uiT

pp(kT + jTi)
]T

and qi(kT +

jTi) =
[
xiT (kT + jTi), ūiT

c (kT + jTi), ũiT

c (kT + jTi)
]T

when jTi = ȷT̃i, ∀ȷ = 0, 1, . . . , Ñi, else qi(kT + jTi) =[
xiT (kT + jTi), ūiT

c (kT + jTi)
]T

∀j = 0, 1, . . . , Ni then

(11) can be represented by in the form given in (6). The
state-space representations of each P i·j

υ within T described
by Pi·j is as follows:

(
Ai − ϕii(j, j)

)
(Bi

2 − ξii(j, j)) I (Bi
2 − ξii(j, j)) 0

I 0 0 0 0

0
...

... I 0
0 0 0 0 I
I 0 0 0 0


(12)

where xi
p = xi, yi = yic and ui =

[
ûiT

c ũiT

c

]T
. Note that

when jTi ̸= ȷT̃i, the last column and third row of (12) are
removed. Each Ci·j

υ is described as follows:

Ci·j
υ :


[
ûi
c(jTi)

ũi
c(ȷTi)

]
=

[
Ki·j

1 Ki·ȷ
2

]
yic(jTi), jTi = ȷT̃i

ûi
c(jTi) = Ki·j

1 yic(jTi), jTi ̸= ȷT̃i

(13)

for all i = 1, . . . , N , j = 0, 1, . . . ,Ni and ȷ = 0, 1, . . . , Ñi.

Proof. Due to space constraints, a simplified version
of the proof is presented in this paper. By introducing
weighted performance specifications 1 and 2, the overall
model for the plant can be rewritten as follows:
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x(kT + T ) = (A− ϕ)x(kT ) + (B2 − ξ)uc(kT )

+ Θdp(kT )

xw1
(kT + T ) = Aw1(kT )xw1(kT ) +Bw1(k)x(kT )

xw2
(kT + T ) = Aw2(kT )xw2(kT ) +Bw2(k)uc(kT )

zw1
(kT ) = Cw1(kT )xw1(kT ) +Dw1x(kT )

zw2
(kT ) = Cw2(kT )xw2(kT ) +Dw2uc(kT )

y
c
(kT ) = x(kT ) (14)

where zw1
, zw2

, xw1
and xw2

are the measured process
output, controller output and states of W1 and W2

respectively. By shifting xw1
, xw2

, zw1
and zw2

into

system M̃ , the rest of system in (14) together with the

controller network can be place into system P̃ if there
exists connecting signals p(kT ) and q(kT ). Define

pi(kT + jTi) =
[
yi

T

pp(kT + jTi), uiT

pp(kT + jTi)
]T

(15)

and qi(kT + jTi) when jTi = ȷT̃i as

qi(kT + jTi) =
[
xiT (kT + jTi),

ūiT

c (kT + jTi), ũiT

c (kT + jTi)
]T (16)

and for jTi ̸= ȷT̃i as

qi(kT + jTi) =
[
xiT (kT + jTi), ūiT

c (kT + jTi)
]T

(17)

∀i = 1, . . . , N, j = 0, 1, . . . ,Ni and ȷ = 0, 1, . . . , Ñi.
Let (15) - (17) be the augmented input and output of each

P̃i·j . The rest of system in (14)and the controller network
representations in (5) can be rearranged to form each pair
of P i·j

v and Ci·j
v in (12) - (13). This completes the proof.

3.2 Plantwide connective stability design

The use of communication in a controller network makes it
prone to issues such as data packet drop-outs. As such, it is
important for the controller network to still maintain sta-
bility of the plant when the communication links between
controller are lost. A controller network that possesses this
feature leads to a connectively stable plant. Based on the
concept of dissipativity, a plantwide connective stability
condition is developed and incorporated into the design
framework. Dissipativity is an effective tool for analyzing
the stability of large -scale interconnected systems based
on its input-output property.

Definition 1. (Byrnes and Lin (1994)). A dynamic system
Σ is said to be dissipative if there exists a nonnegative
function V : X → R with V(0) = 0 called storage function,
such that for all u(k) ∈ U, x(0) ∈ X and τ ∈ Z+ :=
{0, 1, 2, . . .},

V(x(τ + 1))− V(x(0)) ≤
τ∑

k=0

w(u(k), y(k)) (18)

where w(u(k), y(k)) : U×Y → R is called the supply rate.

In this paper, a quadratic supply rate of

w(u(k), y(k)) = y(k)
T
Qy(k)+2y(k)

T
Su(k)+u(k)

T
Ru(k).

(19)
is used, where Q = QT , S, R = RT are constant
matrices of appropriate dimensions. Systems that are

dissipative with respect to the above supply rate are
said to be (Q,S,R)-dissipative. For linear systems, the
(Q,S,R)-dissipativity condition can be represented using
Linear Matrix Inequalities (LMIs) as shown in Tan et al.

(1999). Using the dissipativity of system M̃ and P̃, the
connective stability of the plantwide process system is
given in following theorem:

Theorem 2. Suppose a stable system P̃ is (Q,S,R)-

dissipative with Q < 0 and R > 0. Then system M̃ -
P̃ shown in Fig. 1 is plantwide connectively stable if
M̃ is (diag(−γ−2I,−R), diag(0,−ST ), diag(I,−Q))-

dissipative whereQ = diag
i=1,...,N

{
diag

j=0,...,Ni

Qi·j
}
withR and

S having similar structure.

Due to space constraints, the proof to Theorem 2 is omit-
ted in this paper. From Theorem 1 any existing network
of processes and controllers with asynchronous communi-
cation and control can be represented by a M̃ -P̃ system.
With this representation and Theorem 2, the existence of
each state feedback controller within the controller net-
work that ensures connective stability of plantwide process
is formulated into the following stabilizability problem.

Theorem 3. Given a network of N processes and N con-
trollers with asynchronous control and communication
that is represented by system M̃ -P̃ ( as shown in The-

orem 1). Then there exists controller gains, Ki·j
1 and Ki·ȷ

2

(∀i = 1, . . . , N, j = 0, 1, . . . ,Ni, and ȷ = 0, 1, . . . , Ñi) that
ensure

1: the plantwide connective stability and the system
from dp to z at each time period T to have an H∞
norm less than γ,

2: the local stability of each P̃i·j at each j-th time
instant within T ,

if symmetric matrices X̃m > 0, X̃i·j > 0, Q̃i·j < 0,
R̃i·j > 0 and S̃i·j with matrices S̃, R̃ and Q̃ repre-

sented as Q̃ = diag
i=1,...,N

{
diag

j=1,...,Ni

Q̃i·j
}

and

[
N i·j

Bu

N i·j
Dqu

]
=

Ker
([

Bi·jT
u Di·jT

qu

])
can be found such that

[
MT

I

]T

X̃m 0 0 0 0 0
0 I 0 0 0 0

0 0 R̃ 0 0 S̃T

0 0 0 −X̃m 0 0
0 0 0 0 −γ2I 0

0 0 S̃ 0 0 Q̃


[
MT

I

]
< 0 (20)

[
N i·j

Bu

N i·j
Dqu

]T [
Ai·j

p X̃i·jAi·jT
p − X̃i·j −Bi·j

p Q̃i·jBi·jT
p

Ci·j
q X̃i·jAi·jT

p −
(
S̃i·jT
i +Di·j

qp Q̃
i·j
)
Bi·jT

p

Ai·j
p X̃i·jCi·jT

q −Bi·j
p

(
S̃i·j + Q̃i·jDi·jT

qp

)(
Ci·j

q X̃i·jCi·jT
q − R̃i·j − S̃i·jT

i Di·jT
qp

−Di·j
qp S̃

i·j −Di·j
qp Q̃

i·jDi·jT
qp

)


×
[
N i·j

Bu

N i·j
Dqu

]
< 0

(21)
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[
−X̃i·j −Bi·j

p Q̃i·jBi·jT
p

−Di·j
qp Q̃

i·jBi·jT
p − S̃i·jTBi·jT

p

−Bi·j
p Q̃i·jDi·jT

qp −Bi·j
p S̃i·j

−R̃i·j −Di·j
qp S̃

i·j − S̃i·jTDi·jT
qp −Di·j

qp Q̃
i·jDi·jT

qp

]
< 0

(22)

for all i = 1, . . . , N , j = 1, . . . ,Ni .

Due to space constraints, the proof is omitted.

Control design. If the conditions in Theorem 3 are satis-
fied, then there exist state feedback controllers that ensure
the connective stability and specified control performance.
These controllers can then be designed individually and
independently: At each jTi time instant within T , Pi·j

in (7) can be rewritten as

Pi·j =

[
Ai·j

p +Bi·j
u Ki·j

p Bi·j
p

Ci·j
q +Di·j

quK
i·j
p Di·j

qp

]
(23)

where for all jTi = ȷT̃i

Ki·ȷ
p =


Ki·ȷ

1

Kiℓ1·ȷ
2
...

Kiℓ2·ȷ
2


ℓ1,ℓ2 ̸=i

otherwise Ki·j
p = Ki·j

1 , ∀i, ℓ1, ℓ2 = 1, . . . , N , j =

0, 1, . . . ,Ni and ȷ = 0, 1, . . . , Ñi. Matrices Qi·j , Si·j , Ri·j

are obtained by observing[
Qi·j Si·j

Si·jT Ri·j

]
=

[
−R̃i·j S̃i·jT

S̃i·j −Q̃i·j

]−1

(24)

and X̃i·j = (X)i·j
−1

. With these matrices, the controllers
(Ki·j

p ,∀i = 1, . . . , N j = 0, 1, . . . ,Ni) are designed by
solving by the (Q,S,R)-dissipativity LMI (described in

Tan et al. (1999)) where matrices Ai·j
cℓ and Ci·j

cℓ are
replaced by matrices (Ai·j

p +Bi·j
u Ki·j

p ) and (Ci·j
q +Di·j

quK
i·j
p )

respectively.

The design of a controller network with asynchronous
control and communication is summarized in the following
procedure:

Procedure 1.

(1) For any given plantwide process, develop the matrices
Hiℓ

p based on the process flow diagram and generate

matrices Hiℓ
c to describe the desired control network

topology.
(2) Determine plantwide system period T from Ti and T̃i,

for all i = 1, . . . , N . Construct both matrices Hiℓ
p and

Hiℓ
c using (4) and (5).

(3) Using models of both process unit P i and controllers
Ci and matrices Hiℓ

p and Hiℓ
c , the process and con-

troller network with asynchronous control and com-
munication is converted into system M̃ -P̃ (as shown
in Theorem 1). This step also allows performance
specifications in P 1 and P 2 to be incorporated into
system M̃ -P̃.

(4) Proceed with Theorem 2 to establish the existence
of each state feedback controller at different jTi time

instants within T . If no solutions are found, go back
to Step 1 and redesign the control network topology.

(5) Obtain Qi, Si, Ri through the relationship shown in

Equation (24) and X̃i·j = (X)i·j
−1

.
(6) Each controllers are designed independently by solv-

ing the dissipativity LMI in Tan et al. (1999).

The above framework can be extended to output feedback
control. This extension is particulary useful in process con-
trol where full state information is usually not available.
Similar steps in the above procedure can be undertaken to
design each output feedback controller.

A case study has been conducted using the proposed
approach. The results, while cannot be presented here due
to space limitation, have shown the proposal approach
effective.

4. CONCLUSION

A new discrete-time networked process control approach is
presented. In this framework, plantwide process with asyn-
chronous control and communication is described by a pro-
cess and controller network. Due to the asynchronous na-
ture of the network, lifted process and control models are
used to represent the dynamics of the plant at each time
instant within a plantwide-system period, T . The design of
each controller is implemented in two steps. A plantwide
connective stabilizability condition and the conditions that
ensure plantwide performance are formulated in the form
of LMIs. The solutions to these LMIs translate the per-
formance and stability specifications into constraints for
which controllers at each time instant within T has to
satisfy. The controllers are then independently designed.
This approach leads to a more scalable, autonomous and
fault tolerant plantwide control strategy.
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