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Abstract: By revealing the deficiency of existing internal model control (IMC) based methods for load 
disturbance rejection for integrating processes with slow dynamics, a modified IMC design is proposed to 
deal with step or ramp type load disturbance as often encountered in practice. The controller 
parametrization is based on a two-degree-of-freedom (2DOF) control structure which allows for 
independent regulation of load disturbance rejection from the setpoint tracking. Analytical controller 
formulae are given based on classification of the ways by which such load disturbance seeps into the 
process. It is an obvious merit that there is only a single adjustable parameter in the controller design, 
which in essence corresponds to the time constant of the closed-loop transfer function for load 
disturbance rejection, and can be monotonically tuned to meet a trade-off between disturbance rejection 
performance and closed-loop robust stability. Robust tuning constraints are given correspondingly to 
accommodate for process uncertainties. An illustrative example is given to show the effectiveness and 
merits of the proposed method. 

Keywords: Integrating process, internal model control (IMC), load disturbance rejection, slow dynamics, 
asymptotic tracking, robust stability. 

 

1. INTRODUCTION 

Integrating processes are difficult to be manipulated in 
engineering practices, e.g., heating-up sections of various 
industrial reactor tanks and distillation columns, due to the 
fact that a balance relationship between the input and the 
output of such a process may be easily destroyed by load 
disturbance. In addition, time delay is usually associated with 
practical applications, which brings more challenge to 
effective control of integrating processes (Huzmezana et al, 
2002). It has been widely recognized that if the conventional 
unity feedback control structure is used, the water-bed effect 
between the setpoint response and the load disturbance 
response is unavoidably severe for integrating and unstable 
plants (Zhou, Doyle, and Glover, 1995). A number of two-
degree-of-freedom (2DOF) control schemes have therefore 
been developed in recent years for independent regulation of 
setpoint tracking and load disturbance rejection. By using the 
Smith predictor (SP), Tian and Gao (1999) demonstrated that 
a double-controller scheme can significantly improve system 
capacity of load disturbance rejection for chemical 
integrating processes with dominant time delay. Further 
enhanced SP schemes can be seen in the recent references 
(Kwak, Whan, and Lee, 2001; Chien, Peng, and Liu, 2002; 
Hang, Wang, and Yang, 2003; Normey-Rico and Camacho, 
2002, 2009; Liu et al, 2005; Zhang, Gu, and Rieber, 2008). 
Owing to that the standard SP control structure is in essence 
equivalent to the internal model control (IMC) structure for 
time delay processes (Morari and Zafiriou, 1989), Kaya 

(2004) proposed an alternative 2DOF IMC scheme in terms 
of user-specified gain and phase-margin specifications. By 
comparison, a few papers (Torrico and Normey-Rico, 2005; 
Garcia and Albertos, 2008) recently presented discrete-time 
domain 2DOF control methods for advanced regulation of 
integrating processes. With a focus on closed-loop 
performance for disturbance rejection in the framework of the 
unity feedback control structure, IMC-based PID tuning 
methods have been elaborated in the recent references (Lee et 
al, 1998; Wang and Yang, 2001; Skogestad, 2003; Lee and 
Edgar, 2004; Jose, Rosendo, and Alejandra, 2004; 
Shamsuzzoha and Lee, 2007). Visioli (2001) developed an 
optimization algorithm for PID tuning in terms of the 
integral-time-squared-error (ITSE) criterion. Wang and Cai 
(2002) gave another PID tuning method for disturbance 
rejection based on using expected closed-loop gain and phase 
margin specifications.  

Note that most of existing IMC-based methods as 
aforementioned for load disturbance rejection have been 
devoted to optimizing the closed-loop sensitivity function, 

r1S T= − , where rT  denotes the closed-loop transfer function, 
based on the H2 optimal performance objective, 

2 2
r2 2

min min (1 ) /e T s= − . For an integrating process, an 
additional asymptotic tracking constraint of 

0
lim / 0
s

dS ds
→

=  is 

required for controller design to reject a step type load 
disturbance that seeps into the process at its input side 
(Morari and Zafiriou, 1989). However, for an integrating 
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process with slow dynamics, that is, the process transfer 
function, G , has slow pole(s), it can be seen from the load 
disturbance transfer function, dH GS= , that the load 
disturbance response is inevitably subject to a long ‘tail’, i.e., 
sluggish load disturbance suppression. So is for the presence 
of a deterministic load disturbance that seeps into the process 
with slow dynamics. A modified IMC filter design was 
proposed in the recent papers (Liu and Gao, 2008b, 2009b) to 
cope with this problem for stable processes with time delay, 
inspired by the early idea of Horn, Arulandu and Braatz 
(1996) for cancelling the slowest pole of a delay-free process. 
In view of that significant improvement for load disturbance 
rejection can thus be obtained, this paper extends the 
approach for integrating processes with time delay, based on 
a 2DOF control structure as introduced in Zhang et al (2004) 
and Liu et al (2005a, b). For the load disturbance types of 
step and ramp as often encountered in practice, modified 
IMC controller designs are proposed in terms of classification 
of the ways by which such load disturbance seeps into the 
process. It is therefore clarified that different IMC filter 
structures should be developed for controller design to reject 
different types of load disturbance that may result in steady 
output offset.  

2. CONTROL STRUCTURE AND CLASSIFICATION OF 
LOAD DISTURBANCE 

To allow for independent regulation of both setpoint tracking 
and load disturbance rejection, a 2DOF control structure is 
adopted to present the proposed controller design, which is 
shown in Fig.1,  
 
 
 
 
 
 
 
 
Fig. 1. Two-degree-of-freedom control structure 
where G  denotes the process, C  the feedforward controller 
for setpoint tracking, F  the feedback controller for load 
disturbance rejection, rT  the desired transfer function for 
setpoint tracking; r  is the setpoint, y  the process output, ry  
the referential output, id  load disturbance that seeps into the 
process at its input side, 

od  load disturbance that seeps into 
the process at its output side with a transfer function, dG . 
Note that the standard 2DOF IMC structure cannot guarantee 
internal stability of the closed-loop system for integrating 
processes (Morari and Zafiriou, 1989). The above control 
structure was originally proposed by Zhang et al (2004), and 
essentially, is equivalent to the 2DOF control structure given 
by Liu et al (2005a, b), as can be verified from the nominal 
transfer functions for setpoint tracking and load disturbance 
rejection.  

Without loss of generality, an integrating process is described 
in the form of 

p
m

p( 1)
sk

G e
s s

θ

τ
−=

+
                                                                 (1) 

where pk  denotes the proportional gain, θ  the process time 
delay, pτ  a time constant reflecting the inertial characteristics. 
It should be noted that the above model can effectively be 
used to represent a wide variety of higher-order integrating 
processes (Liu and Gao, 2008a). 
Following the IMC-based controller design method for 
setpoint tracking given by Liu and Gao (2005a), the setpoint 
tracking controller can be derived using (1) as   

p
2

p c

( 1)
( 1)

s s
C

k s
τ
λ

+
=

+
                                                                      (2) 

along with  

r 2
c

1
( 1)

sT e
s

θ

λ
−=

+
                                                                   (3) 

where cλ  is an adjustable parameter for setpoint tracking. 
Note that the above design can lead to the aforementioned H2 
optimal performance for the nominal case of 

mG G= , 
corresponding to a smooth output response with no overshoot 
for step change of the setpoint. 
Hence, the proposed controller design is herein concentrated 
on F  for load disturbance rejection. Among different types 
of load disturbance, step or ramp type disturbance may result 
in steady offset of the process output, which is generally not 
allowed in practical applications. Note that unlike the case for 
a stable process, a step or ramp type load disturbance may 
result in apparently different response characteristics 
according to the ways by which the disturbance seeps into an 
integrating process. Also note that unlike stochastic 
disturbances, in many practical applications step or ramp type 
load disturbance can be elementally conjectured from the 
process mechanism or observed from the steady output error. 
For instant, temperature drop arising from the load 
disturbance of air convection in a heating barrel for injection 
molding (Liu, Yao and Gao, 2009a). From a practical view, 
the ways of such load disturbance seeping into an integrating 
process is herein classified as two for study, as shown in 
Fig.1, one from the process input side, and the other from the 
process output side with a transfer function, 

d
d

d 1
kG
sτ

=
+

                                                                           (4) 

where dk  denotes the magnitude of such a deterministic load 
disturbance while the disturbance itself is normalized as the 
unity, and dτ  is a modeled time constant roughly reflecting 
the disturbance dynamics. 

3. PROPOSED CONTROLLER DESIGN 

3.1  Step Type Load Disturbance 

It can be seen from Fig.1 that the transfer functions relating 
id  and 

od  to y  can be derived respectively as  

di

i 1
y G
d GF

=
+

                                                                         (5) 
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do d

o 1
y G
d GF

=
+

                                                                        (6) 

Note that the complementary sensitivity function of the 
closed-loop structure between the process input and output 
can be formulated as  

d 1
GFT

GF
=

+
                                                                           (7) 

which is actually equivalent to the transfer function from id  
to the controller output, fu . Therefore, (5) and (6) can be 
rewritten as 

di
d

i

(1 )y G T
d

= −                                                                      (8) 

 do
d d

o

(1 )y G T
d

= −                                                                     (9) 

For an integrating process, as modeled in (1), it is easy to see 
that two asymptotic tracking constraints to reject a step type 
load disturbance occurring at the process input side are 
required as  

d0
lim(1 ) 0
s

T
→

− =                                                                       (10) 

d0
lim (1 ) 0
s

d T
ds→

− =                                                                   (11) 

Following the IMC-based design procedure given by Liu and 
Gao (2005a), a desired closed-loop transfer function for load 
disturbance rejection can be obtained as 

f
d-IMC 3

f

(3 ) 1
( 1)

ssT e
s

θλ θ
λ

−+ +=
+

                                                        (12) 

where 
fλ  is an adjustable parameter for tuning closed-loop 

performance for disturbance rejection.  
According to the nominal case of mG G= , the feedback 
controller can be inversely derived from (7) as 

d

m d

1
1

TF
G T

= ⋅
−

                                                                     (13) 

Substituting (12) into (13), we obtain the IMC-based 
controller form of 

p f
IMC 3

fp f
3

f

( 1)[(3 ) 1] 1
(3 ) 1( 1) 1

( 1)
s

s s s
F sk s e

s
θ

τ λ θ
λ θλ
λ

−

+ + +
= ⋅ + ++ −

+

                 (14) 

Note that the second multiplier in (14) satisfies 

f
3

f

1lim 1(3 ) 11
( 1)

s ss e
s

θλ θ
λ

→∞ −
=+ +−

+

                                                 (15) 

0 f
3

f

lim (3 ) 11
( 1)

s s

s
s e

s
θλ θ

λ
→ −

= ∞+ +−
+

                                              (16) 

2
2 2
f f0 f

3
f

lim 6 6(3 ) 11
( 1)

s s

s
s e

s
θ

λ λ θ θλ θ
λ

→ −
= + + < ∞+ +−

+

                    (17) 

which imply that this multiplier can be viewed as a special 
bi-proper integrator with a double zero at 0s = . Note that it 
was analytically approximated together with the first 
multiplier into a PID form for implementation by Liu and 
Gao (2005a), by means of the mathematical Taylor series. In 
fact, it may be practically implemented using the closed-loop 

unit shown in Fig.2, such that no approximation error will be 
caused. 
To reduce the influence arising from the slow dynamics of G  
or dG  to load disturbance response of diy  or doy , it is ideal 
to eliminate the corresponding pole from the characteristic 
equation of (8) or (9). It is thus expected that d1 T−  has the 
 
 
 
 

Fig. 2. Positive feedback control unit 

corresponding zero to cancel the slow pole of mG  or dG , 
such that the characteristic equation is governed only by the 
time constant of dT . The numerator of d1 T− , however, is 
unavoidably involved with time delay factor(s) for a time 
delay process, so it cannot be factorized to make exact zero-
pole cancellation with the denominator of mG  or dG . The 
following asymptotic constraint is therefore proposed to 
realize the above idea,  

d1/
lim (1 ) 0

s
T

τ→−
− =                                                                     (18) 

where pτ τ=  (or dτ ). 
Hence, for an integrating process with slow dynamics, we 
propose a rectified closed-loop transfer function to reject a 
step type load disturbance occurring at the process input side,  

2
2 1

di-step 4
f

1
( 1)

ss sT e
s

θη η
λ

−+ +=
+

                                                     (19) 

where 1η  and 2η  are used to satisfy the asymptotic 
constraints in (11) and (18). 
Substituting (19) into (11) and (18), we obtain 

p

1 f
/2 4

2 p 1 p f p

4

[( / 1) 1]e θ τ

η λ θ

η τ η τ λ τ −

= +⎧⎪
⎨ = + − −⎪⎩

                                    (20) 

Accordingly, substituting (19) into (13), we obtain the 
feedback controller, 

2
p 2 1

di-step 24
2 1p f

4
f

( 1)( 1) 1
1( 1) 1

( 1)
s

s s s s
F

s sk s e
s

θ

τ η η
η ηλ

λ
−

+ + +
= ⋅

+ ++ −
+

           (21) 

It is seen that there is essentially one adjustable parameter, 
fλ , 

in the controller, which may be monotonically tuned to obtain 
desirable disturbance rejection performance.  
To reject a step type load disturbance occurring at the process 
output side with a slow transfer function of dG , we propose 
the closed-loop transfer function as 

1
do-step 3

f

1
( 1)

ssT e
s

θη
λ

−+=
+

                                                          (22) 

Substituting (22) into (18), we obtain 
d/3

1 d f d[( / 1) 1]e θ τη τ λ τ −= − +                                                   (23) 

Substituting (22) and (23) into (13), we obtain 
p 1

do-step 3
1p f

3
f

( 1)( 1) 1
1( 1) 1

( 1)
s

s s s
F sk s e

s
θ

τ η
ηλ
λ

−

+ +
= ⋅ ++ −

+

                         (24) 

Td

OutIn

+
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3.2  Ramp Type Load Disturbance 

To reject a ramp type load disturbance occurring at the 
process input side, which may be described in the form of a 
double integrator, an additional asymptotic constraint along 
with (10) and (11) to guarantee no steady offset of the 
process output is required accordingly as  

2

d20
lim (1 ) 0
s

d T
ds→

− =                                                                 (25) 

Hence, for an integrating process with slow dynamics, we 
propose the closed-loop transfer function as 

3 2
3 2 1

di-ramp 5
f

1
( 1)

ss s sT e
s

θη η η
λ

−+ + +=
+

                                            (26) 

Substituting (26) into (11), (25) and (18), we obtain  

p

1 f

2 2
2 f 1 f f

/2 3 5
3 p 2 p 1 p f p

5

(5 ) 5 15 / 2

[( / 1) 1]e θ τ

η λ θ
η λ θ η λ θ λ θ
η τ η τ η τ λ τ −

⎧ = +
⎪⎪ = + − − −⎨
⎪ = − + − +⎪⎩

                              (27) 

Substituting (26) and (27) into (13), we obtain the feedback 
controller, 

3 2
p 3 2 1

di-ramp 3 25
3 2 1p f

5
f

( 1)( 1) 1
1( 1) 1

( 1)
s

s s s s s
F

s s sk s e
s

θ

τ η η η
η η ηλ

λ
−

+ + + +
= ⋅

+ + ++ −
+

(28) 

For the case of rejecting a ramp type load disturbance 
occurring at the process output side with a slow transfer 
function of dG , it is similar to the case for rejecting a step 
type load disturbance occurring at the process input side. The 
controller formulae of (20) and (21) can be correspondingly 
adopted, except for that pτ  should be substituted by dτ  in 
(20) for computation.  

4. ROBUST TUNING CONSTRAINTS 

For analysis simplicity, it is practical to lump multiple 
sources of process uncertainty into a multiplicative form to 
treat with (Skogestad and Postlethwaite, 2005). According to 
the standard M − ∆  structure for robustness analysis (Zhou, 
Doyle and Glover, 1995), the transfer function connecting the 
input and output of the multiplicative uncertainty can be 
derived in terms of the closed-loop structure between the 
process input and output as shown in Fig.1, which is exactly 
equivalent to the closed-loop complementary sensitivity 
function, dT . Hence, it follows from the small gain theorem 
that the perturbed closed-loop structure with the 
multiplicative uncertainty hold robust stability if and only if 

d
1T

∞
∞

<
∆

                                                                       (29) 

where m m( ) /G G G∆ = −  denotes the process multiplicative 
uncertainty. Note that for a single-input-single-output (SISO) 
system, there exist 

d dsup( ( ) )T T jω
∞

=  and 

sup( ( ) )jω
∞

∆ = ∆ , [0, + )ω∀ ∈ ∞ . Denote 
m

sup( ( ) )jω∆ = ∆  
hereafter for simplicity. 
Substituting (19) into (29), we obtain a closed-loop tuning 
constraint for rejecting a step type load disturbance occurring 
at the process input side as  

2 2 2
f

m2 2 2 2
2 1

( 1)
( 1)

λ ω
η ω η ω

+ > ∆
− +

                                                 (30) 

Substituting (22) into (29), we obtain a closed-loop tuning 
constraint for rejecting a step type load disturbance occurring 
at the process output side as  

2 2 3/ 2
f

m2 2
1

( 1)
1

λ ω
η ω

+ > ∆
+

                                                           (31) 

Substituting (26) into (29), we obtain a closed-loop tuning 
constraint for rejecting a ramp type load disturbance 
occurring at the process input side as  

2 2 5/ 2
f

m3 2 2 2
3 1 2

( 1)
( ) ( 1)

λ ω
η ω η ω η ω

+ > ∆
− + −

                                     (32) 

Note that a closed-loop tuning constraint for rejecting a ramp 
type load disturbance occurring at the process output side is 
the same as that for rejecting a step type load disturbance 
occurring at the process input side as shown in (30), except 
for that pτ  should be substituted by dτ  when using (20) for 
computation. 
Hence, given a specified upper bound of 

m
∆  in practice, the 

admissible tuning range of 
fλ  in F  can be graphically 

determined by checking the magnitude plots of the above 
tuning constraints, respectively. Owing to that 

fλ  is the only 
time constant of the closed-loop structure as shown in Fig.1 
for load disturbance rejection, tuning 

fλ  to a small value will 
result in a faster load disturbance response, but at the risk of 
closed-loop robust stability in the presence of the process 
uncertainties. In the opposite, increasing 

fλ  to a large value 
will improve the closed-loop robust stability, but at the cost 
of slower load disturbance response. Therefore, by 
monotonically varying 

fλ  in the process operation, a good 
trade-off between disturbance rejection performance and the 
closed-loop robust stability can be conveniently obtained.  

5. ILLUSTRATION 

Consider an integrating process recently studied by Normey-
Rico and Camacho (2009), 

50.1
(5 1)

seG
s s

−

=
+

 

The IMC-based design method (Liu et al, 2005a) gives the 
feedforward and feedback controllers shown in Fig.1 as  

2
c

(5 1)
0.1( 1)

s sC
sλ
+=
+

  

f
IMC 3

5ff
3

f

(5 1)[(3 5) 1] 1
(3 5) 10.1( 1) 1

( 1)
s

s s sF ss e
s

λ
λλ
λ

−

+ + += ⋅ + ++ −
+

 

Note that the second multiplier in IMCF  is herein implemented 
using the closed-loop unit shown in Fig.2 for simulation 
comparison. 
Using the proposed method in this paper, the controller 
formulae of (20) and (21) for rejecting a step type load 
disturbance occurring at the process input side gives 
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2
2 1

di-step 24
52 1f

4
f

(5 1)( 1) 1
10.1( 1) 1

( 1)
s

s s s sF
s ss e

s

η η
η ηλ

λ
−

+ + += ⋅
+ ++ −

+

 

1 f4 5η λ= + , 4
2 1 f5 9.197(0.2 1) 25η η λ= + − −  

By adding a unity step change to the setpoint and to the 
process input at 50t = (s), and taking c 3λ =  and f 3.6λ =  for 
comparison, we obtain the output responses shown in Fig.3.  

(a) 

 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
Fig. 3. Nominal output responses 

It is seen that the load disturbance response is recovered more 
quickly by the proposed method, in terms of the similar 
setpoint tracking speed and the same magnitude of 
disturbance response peak. The IMC-based method given by 
Liu et al (2005a) results in a very close response with the 
proposed method when using the above control parameters. If 

f 2λ =  is tuned to improve the load disturbance response, it 
is seen from Fig.3 that f 1.5λ =  is needed by the IMC-based 
method (Liu et al, 2005a) to obtain the same disturbance 
response peak, but still with a longer recovery time.  
Now assume that the process time constant is actually 30% 
larger. The perturbed output response is shown in Fig.4, 
indicating good robust stability of the proposed method. 
 
 
 
 
 
 
 
 
 
Fig. 4. Perturbed output responses 

To demonstrate the achievable performance for rejecting load 
disturbance from the process output side with a slow 
dynamics, assume that the load disturbance transfer function 
is d 1/(10 1)G s= + , but is actually estimated with 20% error 
for control design, i.e., d 1/(8 1)G s= + . The proposed 
controller formulae of (23) and (24) for such case gives  

1
do-step 3

51f
3

f

(5 1)( 1) 1
10.1( 1) 1

( 1)
s

s s sF ss e
s

η
ηλ
λ

−

+ += ⋅ ++ −
+

 

3
1 f4.2821(0.125 1) 8η λ= − +  

By adding a unity step change of the load disturbance at 
60t = (s), and taking 

f 2λ =  for comparison, the results are 
shown in Fig.5.  

 
 
 
 
 
 
 
 
 
Fig. 5. Responses for a slow load disturbance at the output 
side 

It is seen that apparently improved disturbance response is 
obtained by the proposed method, which demonstrates that 
based on assessment of the deterministic load disturbance 
characteristics, further enhanced disturbance rejection 
performance can therefore be obtained.  

6. CONCLUSIONS 

To overcome sluggish load disturbance rejection associated 
with integrating processes with slow dynamics, a modified 
IMC design for controller parametrization has been proposed 
based on a 2DOF control structure which allows for separate 
optimization of load disturbance rejection. For step or ramp 
type load disturbance as often encountered in practice, 
controller formulae have been analytically derived based on 
classification of the ways by which such load disturbance 
seeps into the process. Simulation comparisons have 
evidently demonstrated that the disturbance type based 
controller design can give noteworthy performance 
improvement for load disturbance rejection. 
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