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Abstract: Near-infrared spectroscopy along with process control variables, such as integral of airflow rate 

and the integral of alkali addition rate can be used as the basis for the monitoring of key analyte 

concentrations on a fermentation process. Within this paper, sequential data fusion modeling is applied 

first, embracing both physical and chemical information. Aiming to overcome the limitations of sequential 

modeling and to compare model accuracy, a novel data fusion methodology based on Partial Least 

Squares, weighted multivariate calibration, is introduced. The methodologies are applied to data from an 

industrial fermentation process and it is shown that the data fusion method results in a 50% improvement 

in the Root Mean Square Error of Cross Validation (RMSECV) compared to more traditional calibration 

approaches. An optimisation procedure was then considered in association with spectral window selection 

(SWS) to attain more accurate data fusion models.  
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1. INTRODUCTION 

In industrial fermentation processes, achieving process 

consistency and reproducibility is of particular importance, in 

the manufacture of product of consistently high quality 

(Navratil et al., 2004). To reduce batch-to-batch variation, a 

number of statistical process monitoring approaches have 

been developed, which utilize on-line process measurements 

to monitor key analyte concentrations including near-infrared 

(NIR) spectroscopy. This is a rapid, reliable, and robust 

monitoring technique, and a powerful method for qualitative 

and quantitative analysis (Šašić and Ozaki, 2001; Hermida et 

al., 2001). Together with other process monitoring sensors, a 

number of on-line batch process monitoring schemes have 

been proposed based on the multivariate projection techniques 

of Principal Component Analysis (PCA) and Partial Least 

Squares (PLS) (Nomikos and MacGregor, 1994,; Kourti et al., 

1995; Wold et al., 1998). 

Data fusion, a multivariate statistical analysis method is 

concerned with the use of methodologies that combine data 

from a number of sources. The concept of data fusion 

originates from marketing studies (Baker et al., 1989). The 

hypothesis is that data fusion can extract more information 

than that is achievable from a single source. The fusion of 

data from NIR spectroscopy and electronic noses (EN) has 

been successfully used for the monitoring of yogurt 

fermentation in a laboratory (Cimander et al., 2002). In other 

data fusion studies, the integration of process data (physical 

state) from a bioreactor, with on-line signals including 

spectroscopic data (chemical state) has also been shown to 

result in a significant improvement in bioprocess monitoring 

through the application of multivariate statistical data 

modelling and analysis tools (Trygg and Wold, 1998; Gurden 

et al. 2002).  

In this paper, calibration models, based on partial least 

squares (PLS) are calculated for an industrial data set 

consisting of spectroscopic and process data. The goal is to 

assess whether the performance of individual calibration 

models is enhanced when either the spectroscopic and process 

variables or individual models are combined using a number 

of data fusion techniques.  

One approach that has previously been shown to be successful 

was sequential data fusion (Triadaphillou et al, 2007). The 

basis of this approach is that a PLS model is built on the 

spectroscopic data to predict the analyte concentration of 

interest and the residuals from this model are then predicted 

by the process data using a second PLS model. A final 

calibration model is then formed by combining the two PLS 

models. The results showed that the accuracy of the 

calibration model was improved. A potential limitation of 

sequential data fusion is that no consideration is given to the 

weightings of the two PLS models. There is thus a research 

challenge to identify the appropriate weights. To address this 

issue a weighted data fusion approach is proposed where the 

PLS models are built individually and the weighting 

combination that gives the smallest RMSECV (root mean 

square error of cross validation) is determined.  

The second approach considered is based on the optimisation 

of the weighting of the individual variables as opposed to the 

models. In summary, it is observed that the optimisation 

approach gives the model with the lowest RMSECV for this 

data set. 

2. CASE STUDY 

2.1  Process Description 

The dataset, comprising five batches, was generated from an 

industrial fermentation process where each batch is of 

approximately 10 days in duration. Within this study, model 

building is based on two calculated process variables, the 

integral of airflow rate and the integral of alkali addition rate. 
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These variables are indicative of the behaviour of the culture 

as both dissolved oxygen and pH are under control. The 

process measurements are recorded online with a sampling 

rate of 5 s. The NIR spectra are also monitored with a 

sampling rate of approximately every 1 min 50 s. The offline 

measurement of interest in this paper is glucose concentration 

(g/l). It was measured once or twice a day.  

The first step in the analysis was to address the difference in 

sampling rates. The datasets were merged and data alignment 

was carried out using the nearest point method, i.e. the data 

for modelling was selected based on the data/time stamp 

generated by each data logging system. Critical to this 

approach was to ensure that the two computer data collection 

systems were synchronized prior to data acquisition. In 

summary the more frequently sampled sources (the process 

and spectroscopic data) were down-sampled to align with the 

off-line data. This resulted in approximately 12 samples per 

batch. 

2.2  Pre-processing of Spectroscopic Data 

Data pre-processing is an essential step irrespective of the 

objectives of model development. The following procedures 

were carried out using MATLAB software with the PLS 

toolbox (Eigenvector Research, INC, Manson, WA).  

Prior to performing mathematical transformations on the data, 

the first step was to remove the areas of instrument saturation 

from the spectroscopic data. From the raw NIR spectra plot 

(Fig. 1) two areas of saturation can be observed, 4500 ~ 5300 

cm-1 and 6500 ~ 7200cm
-1

. These sections were removed 

from the data set for all batches. 

 

Fig. 1. Raw NIR data plot 

The next stage was to apply MSC (Multiplicative Scattering 

Correction) to each batch, to remove the scattering effect due 

to the process not being a homogenous mixture and the 

viscosity of the product changing over time thereby impacting 

on the NIR spectra as can be observed from Fig.1. In the 

application of MSC, the reference spectrum was selected as 

the mean spectra of each batch. Savitzky Golay smoothing 

and first derivatives were then applied to the MSC corrected 

data to smooth the signal and remove the water background 

and baseline offsets. The first derivative was calculated using 

Savitsky Golay smoothing with a 15 point window and a 

second order polynomial. These settings were found to be 

appropriate to achieve noise reduction whilst maintaining 

signal information content. 

The final stage was to select regions of the spectra based on 

knowledge of the chemical structure of the product. The 

wavenumbers of interest were 5997.5 ~ 5634.9 cm
-1

, the first 

overtone of the CH band and 7258.7 ~ 7243.3 cm
-1

, the 

second overtone of the CH band.  

2.3  Computational Methods 

In spectral calibration, the most commonly applied method is 

PLS, (Geladi and Kowalski, 1986). The goal of PLS 

regression is to predict the response Y (glucose concentration) 

from the descriptors X (spectral absorbances). In PLS 

modelling, it can be considered that there are two 

relationships, the outer relationship, which can explain X and 

Y individually and the inner relationship, which links the two 

blocks. The outer relationship is given by: 
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From these two orthogonal decompositions, it can be 

observed that linear PLS projects X and Y onto a number of 

latent variables (LVs), 
j

t  and 
j

u , respectively. The loadings 

for each block X and Y are also attained, 
j

p and 
j

q . The 

ultimate aim of PLS modeling is to minimise 
*

F  (the residual 

of the Y decomposition) whilst at the same time calculating 

the inner relation between X and Y: 
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b is equivalent to a regression 

coefficient. A key step in PLS is the determination of the 

number of LVs (h) that are retained in the model. This can be 

determined using cross validation. The final model is given 

by: 
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2.4  Spectral Window Selection (SWS) 

In spectral analysis, one of the issues is whether to apply the 

analysis to all the wavenumbers or only specific regions. 

More specifically when developing a calibration model from 

the complete spectra for quantitative analysis, the prediction 

results can be affected by those wavenumbers that do not 

provide predictive information about the analyte of interest 

(Triadaphillou et al., 2007). Consequently wavenumber 

selection can be used to address this issue by removing noise 

or other variations that may degrade calibration model 

performance. 

One approach to wavenumber selection is through knowledge 

of the analyte chemical structure as described previously. 

However it is not always possible to select specific regions 

due to a lack of knowledge of the chemical composition of the 

variable of interest. Thus it is important to consider alternative 
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statistical based approaches. One methodology that will be 

considered is spectral window selection (SWS). This is a more 

flexible method for seeking regions that are more appropriate 

for model construction. The philosophy and algorithm of 

SWS was discussed in Hinchliffe et al. (2003) where it was 

termed “the binning method”. Triadaphillou et al. (2007) 

extended the concept to spectroscopic data. The underlying 

algorithm is as follows: 

1.  Mean centre the pre-processed spectroscopic data and the 

process data; 

2.  Set up the initial specification of the number of windows to 

be selected, (only one window is considered in this case 

study), and randomly select the starting wavenumber (s1) and 

width (w1) for the first window; 

3.  The wavenumbers selected in the window are extracted 

and where more than one window is being considered the 

overlapping regions are removed; 

4.  A PLS calibration model is built on the data generated in 

Step 3 and the root mean square (RMS1) is calculated; 

5.  Increments Δs1 and Δw1 are generated from a uniform 

distribution to randomly change the starting wavenumber and 

width of window. (s2=s1+Δs1; w2=w1+Δw1). A new PLS model 

is built on the new window and RMS2 is calculated; 

6.  RMS2 is compared with RMS1 and if RMS2 is smaller then 

the model is improved and hence the incrementsΔs1 and Δw1 

are retained (Δs2=Δs1; Δw2=Δw1) and used to search for the 

next window (s3=s2+Δs2; w3=w2+Δw2). If RMS1 is smaller 

repeat steps 5 and 6, randomly selecting a new Δs1 and Δw1. 

7. This search procedure is repeated until the specified 

number of windows has been retained and the final calibration 

model obtained or a time limit/number of iterations is reached 

for the seeking of a model that gives the smallest RMS. 

3. DATA FUSION METHOLODGIES 

3.1  Sequential Data Fusion  

Sequential data fusion modelling was first proposed by 

Triadaphillou et al (2007). A schematic of the methodology is 

given in Fig. 2. More specifically the steps in the algorithm 

for the data set being analysed are as follows: 

(1) The first step is to fit a PLS calibration model, model A, to 

the glucose concentration using the spectroscopic data as the 

input variables. The residuals of this model are then calculated.  

(2) The resulting residuals are then modelled using the 

process data (integral of airflow rate and the integral of alkali 

addition rate) by a second PLS calibration model, model B. 

The residuals in this case are termed the innovations. 

(3) The last step comprises calculating the final model that is 

formed from the predictions of the two models.  
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This sequential modelling methodology is one approach to 

data fusion, and offers the opportunity to take account of both 

chemical and process information. The rationale for utilising 

the NIR data is that it provides specific information on 

glucose concentration whilst the process data provides insight 

into the operation of the process. 

 

Fig 2. Sequential Data Fusion Strategy 

3.2  Weighted Multivariate Calibration 

One limitation of the sequential modeling approach is that for 

this specific dataset, the first PLS model explains in excess of 

90% of the glucose concentration in the training data 

consequently the inclusion of the process data is theoretically 

unnecessary. To address this imbalance with respect to the 

weightings, Liu, et al. (2009) proposed a weighted multiscale 

regression methodology. The weighting was based on the 

prediction residual error sum of squares (PRESS): 
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where the PRESS is given by: 
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Fig 3. Weighted Multivariate Calibration Model Structure 

To investigate the influence of the weightings on the model, 

weighted multivariate calibration was studied. PLS models 

were built individually for the NIR data and the process 

variables. These were then combined utilising pre-defined 

weightings (w1, w2, …, wn, where 1
1




n

i
i

w ). The final model 

is given by: 

1 1 2 2: ... n nModel w w w   y y y y
 

(8) 

where n is the number of blocks or submodels. A schematic of 

the model structure is given in Fig 3.  
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4. RESULTS AND DISCUSSION 

Three sets of variables are considered in this paper, NIR 

spectra, integral of airflow rate and the integral of alkali 

addition rate. The latter two are process related variables. 

They can be considered individually as two separate data 

blocks or treated as one block comprising two columns. Both 

situations are investigated in this paper. 

4.1 Two Dimensional Model 

Two blocks are analysed in this approach, the NIR spectra and 

the two process variables. The NIR data block comprise the 

preprocessed data with the wavenumbers associated with the 

first overtone, first overtone combination and second overtone 

wavenumbers of CH band. The model for this two 

dimensional model is: 

1 1 2 12D Model : (1 )w w  y y y
 (9) 

where y


 is the final model prediction; 
1

y


 and 
2

y


 are the 

predictions from the PLS model built on the NIR block and 

process data block respectively; and 
1

w is the weighting of the 

NIR submodel. To attain appropriate weightings, all possible 

combinations were investigated and the set that gave the 

minimum RMSECV was selected, Fig. 4. 

 

Fig 4. RMSECV for the Two Dimensional Model 

The 2D model is given in equation (10), 39.4% of the model 

is explained by NIR (
1

ŷ ), the remaining 60.6% explained by 

the process variables (
2

ŷ ). 

2
ˆ606.0ˆ394.0ˆ yyy

1


 
(10) 

The plot of observed versus fitted values is given in Fig. 5 and 

it can be concluded that the model is satisfactory. 

The weighting approach proposed by Liu, et al. (2009) was 

also considered. The PRESS was calculated using leave-one-

batch-out method since there were only 5 batches in the 

dataset. The following model was attained: 

2
ˆ656.0ˆ344.0ˆ yyy

1


 
(11) 

The weightings differ slightly but in both cases the process 

data is more important with respect to capturing the level of 

glucose concentration. 

 

Fig 5. Fit of Two Dimensional Model 

4.2 Three Dimensional Model 

Three blocks NIR (
1

ŷ ), integral of airflow rate (
2

ŷ ) and the 

integral of alkali addition rate (
3

ŷ ) were then considered. The 

underlying model can be written as: 

1 1 2 2 3 1 23D Model : (1 )w w w w    y y y y
 (12) 

Fig 5 is the RMSECV plotted against the weights of the NIR 

block and the integral of airflow rate (DOT). By finding the 

minimum RMSECV, the appropriate weightings can be 

selected. 

 

Fig 6. RMSECV in Three Dimensional Model 

The final model is given in equation (11), in which 55.6% of 

the model is explained by NIR, 10.1% is explained by DOT 

and the remaining 34.3% is explained by alkali addition rate. 

32
ˆ343.0ˆ101.0ˆ556.0ˆ yyyy

1


 (13) 

The performance of this 3D model is shown in Fig 7, where 

the results are again satisfactory.  
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The weighting approach of Liu, et al. (2009) was also 

considered and the following model was attained:  

32
ˆ158.0ˆ042.0ˆ800.0ˆ yyyy

1


 (14) 

Compared with the proposed 3D approach, model (14) does 

not give as good fit. In the approach of Liu et al (2009), the 

weighting is based on the individual samples as opposed to 

the individual models and thus in this case the NIR data 

dominates the calculation.  

Comparing the proposed 2D model with the proposed 3D 

model (equations 10 and 13 respectively) the process 

component is dominant. The rationale for this is that the 

combined effect of integral of airflow rate and the integral of 

alkali addition rate impact on glucose concentration. This 

correlation structure is lost when treating the variables 

independently.

 

Fig 7. Fit of the Three Dimensional Model 

4.3 Comparison Between Data Fusion Methods 

The root mean square error of cross validation (RMSECV) is 

calculated for the different data fusion methods. However as 

there are only five batches in the data set, leave-one-batch-out 

method was applied, i.e. each batch was omitted from the 

training data set and served as a validation batch. The results 

are summarised in Table 1. 

Table 1 RMSECV Comparison between Models 

Validated 

Batch 

NIR 

Raw 

Pre-processed 

NIR 

Sequential 2D 3D 

B2 1.906 1.060 1.130 1.052 1.529 

B3 4.827 1.515 0.892 0.611 0.597 

B4 1.172 0.583 0.804 0.640 0.720 

B5 2.552 1.448 1.363 0.856 0.443 

B6 6.214 1.233 1.065 1.016 1.108 

Sum 16.671 5.838 5.253 4.176 4.397 

In Table 1, five models are presented. The first is built solely 

from the raw NIR spectra; the second is based on the pre-

processed NIR data. With the third built from the sequential 

modelling approach. The fourth and fifth models are the two-

dimensional and three-dimensional weighted multivariate 

calibration models discussed in the previous sections. 

Although not reported the sum RMSECV from the Liu et al. 

(2009) approach are 4.188 and 5.322 for the 2D and 3D 

models respectively.  

Comparing the single source models with the data fusion 

based models it is evident that data fusion enhanced the 

results in terms of the RMSECV. Comparing across the three 

data fusion models the performance of the 2D and 3D models 

is better than sequential modelling, indicating the weighting 

of each submodel in data fusion is critical. These results are 

presented in Fig 8. In this figure the error for the individual 

batches is also presented. 

 

Fig 8. RMSECV Comparison Bar Chart (Model 1 – NIR raw 

data; Model 2 – Preprocessed NIR data; Model 3 – Sequential 

Model; Model 4 – 2D Model; 5 – 3D Model)  

4.4 Optimisation of Weighted Multivariate Calibration 

After the data fusion methodology was found to exhibit better 

performance, an alternative approach was considered based on 

the optimisation of the weightings of the individual variables. 

The general expression is given by: 

1 1 2 2  Y X B X B E
 

(15) 

where B1 and B2 are the regression coefficients of data block 

X1 (NIR) and X2 (Process) respectively, and E is the error. 

This model can be rewritten as: 

1 2( , )functionE B B
 

(16) 

By applying this optimisation function, the minimum error 

can be found.  

Table 2 SWS Search Result 

Search No. Start point  

( cm-1) 

End Point 

(cm-1) 

RMSEC 

1 11991 11987 4.406 

2 11987 11980 4.256 

3 11976 11956 4.180 

4 9492 9419 4.079 

5 7687 7332 3.833 

Additional to the optimisation of the weights, the selection of 

the wavenumbers through application of the SWS algorithm 

to the pre-processed NIR data was considered. It is 

conjectured that by refining the selection of wavenumbers an 

enhanced model will materialise. The results following the 

application of SWS are given in Table 2. Five windows were 

selected from the optimisation process, and the root mean 

square error of calibration (RMSEC) was recorded for each 

window. Based on the RMSEC, window 5 was selected for 
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the subsequent analysis, and validation was then performed. 

The results are given in Table 3 and Fig. 9.  

Table 3 RMSECV Comparison after Optimisation 

Validated 

Batch 

2D 
Optimisation 

without SWS 

Optimisation with 

SWS 

Model 1 Model 2 Model 3 

B2 1.052 1.072 0.994 

B3 0.611 0.494 0.516 

B4 0.640 0.753 0.714 

B5 0.856 0.649 0.626 

B6 1.016 0.899 0.773 

RMSECV 4.176 3.867 3.622 

 

Fig 9. RMSECV Comparison after Optimisation 

(Model 1 – 2D model; Model 2 – Optimization on fixed 

window; Model 3 – Optimization with SWS) 

From both Table 3 and Figure 9, the benefits of optimisation 

can be observed. It can be seen that by refining the 

wavenumbers selected based on knowledge of the chemistry 

through the application of SWS the performance of the model 

was improved. 

5. CONCLUSIONS 

This paper has presented two approaches to data fusion, 

sequential modelling and weighted multivariate calibration. 

These two methods were applied to an industrial dataset. Both 

of these data fusion methods gave better performance than a 

single source data model with respect to the RMSECV, with 

approximately 50% improvement being observed thereby 

demonstrating that the combination of spectroscopic and 

process data provides improved calibration model accuracy 

and facilitates greater understanding of process behaviour. As 

a novel methodology, weighted multivariate calibration 

improves model performance by finding the best weighting 

balance of each variable. Optimisation was then applied to the 

weighted multivariate calibration approach alongside the 

refinement of the wavenumbers through the application of the 

SWS algorithm. Once again an improvement in model 

performance was observed. 
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