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Abstract: Latent Variable Modeling (LVM) of batch processes is explored from the view point of its 
application to trajectory tracking model predictive controller design. The ability of the models to capture 
nonlinearity and time-varying properties of batch processes and to provide a well-behaved description of 
the process are important characteristics to be considered. Furthermore, the importance of requiring as 
few batches as possible in the modeling step is considered in the discussion of different models. Two 
previously proposed approaches for batch process modeling (Golshan et al., 2009b) are investigated from 
the above points of view and benefits of them as well as their drawbacks are specified. Then, a new 
approach is proposed to overcome the major shortcoming of each previous approach while capturing 
their major benefits. The impact of the different latent variable modeling approaches on MPC for 
trajectory tracking is illustrated using a simulation of a Nylon polymerization process. 
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1. INTRODUCTION 

Batch processes pose several characteristics that make the 
identification and control studies of batch systems different 
from those of continuous processes. Nonlinear and time-
varying behavior, finite duration, and no equilibrium 
operating point are among the most important differences 
between batch and continuous processes. One of the main 
bottlenecks in the application of advanced control algorithms 
is the process model. Nonlinear mechanistic models have 
been used for the control of batch processes (e.g. Clarke-
Pringle and MacGregor (1997) and Kravaris et al. (1989)). 
However, due to the difficulties associated with the 
development of mechanistic models for real batch processes, 
empirical models are appealing.  

There are two main problems in batch control: (i) the high 
level problem of controlling the final product quality and (ii) 
the lower level problem of trajectory tracking. The concern of 
the former problem is only the product quality at the very end 
of the batch, while the latter problem involves control over 
the local batch behavior at every time point throughout the 
duration of the batch. As a result the requirements for any 
model for the two problems are very different.  In the latter 
problem the sampling and control frequencies are generally 
much higher than for the first problem.  In this paper we are 
only concerned with models for the lower level trajectory 
control problem and the results presented in the paper are 
only relevant to this problem.  

Flores-Cerrillo and MacGregor (2005) proposed the idea of 
Model Predictive Control over batch trajectories based on 
Latent Variable models. Golshan et al. (2009a) made 
improvements to this LV-MPC methodology to allow for 
offset free tracking and non-stationary disturbances. Their 
approach is based on a principal component analysis (PCA) 
model. Golshan et al. (2009b) compared the performance of 
LV-MPC for batch processes for two different LVMs.  

In this paper those two LVMs are investigated in more detail, 
problems associated with each approach are highlighted and a 
new modeling approach that avoids the major problems of 
each of these modeling approaches while retaining the 
important benefits of both of them is proposed.      

2. LATENT VARIABLE MODELING AND 
IDENTIFICATION 

2.1 Rearrangement of Batch Dataset 

The structure of the data collected from a batch process is a 
cube as shown in fig. 1a. There are different approaches for 
rearranging these data for analysis (Nomikos and MacGregor, 
1994, 1995 and Louwerse and Smilde, 2000). The main 
difference among different unfolding approaches comes from 
the way they construct a 2-dimensional array (a matrix) from 
the three dimensional cube of the data set.  

2.1.1 Batch-wise unfolding (BWU). Nomikos and McGregor 
(1995) suggested many possibilities, but proposed the batch-
wise unfolding approach shown in Fig.1b as the most logical 
way for modeling differences among batches. In this 

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoMT1.1

Copyright held by the International Federation of Automatic Control 13



 
 

     

 

approach all the variables at different sample times are put 
beside each other and each batch constitutes one observation 
or row in the unfolded matrix.  Applying PCA or PLS to this 
unfolded matrix allows for modeling the time varying and 
nonlinear behavior of the batches as a locally linear model at 
every point in time. 
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Fig. 1. Batch process dataset and batch-wise unfolding 

2.1.2 Observation-wise unfolding (OWU). Nomikos and 
MacGregor (1994, 1995) and Wold et al. (1998) introduced 
an observation-wise unfolding approach in which variables of 
each sample time are considered as an independent 
observation. The schematic diagram is the same as fig. 1b but 
the time slices are arranged underneath each other instead of 
beside each other. The underlying assumption behind this 
approach is the fact that the correlation structure among the 
dataset does not vary with time and a static average model is 
enough to explain the process. Hence, one can build a LV 
model on the OWU matrix using as few as 1-3 batch runs by 
considering each time step during a batch as an observation. 
However, the time varying nature of most batch processes is 
ignored by this approach.  

2.1.3 Observation-wise with time-lag unfolding(OWTU). To 
overcome this lack of dynamic modeling ability of the OWU 
approach a modification inspired by finite time series 
modeling (Flores-Cerrillo and MacGregor,2005 and Ferrer et 
al. 2008) has been proposed to include time lags in the 
observation-wise unfolded batch dataset. This approach is 
similar to using an ARX model at all time periods during the 
batch. The resulting model is still an average dynamic model 
over the whole batch, but it is not a static model. A schematic 
of the observation-wise unfolding with time-lagging is 
illustrated in Fig. 2 where ph and fh are the past and future 
number of lags taken about each time point. 

 

Fig. 2. Observation-wise with time-lag unfolding approach 

The parameter “ph” should be selected large enough so that 
the missing data imputation algorithm yields satisfactory 

performance, and the parameter “fh” reflects the prediction 
horizon. 

2.2 Comparison of batch-wise and observation-wise with 
time-lag unfolding approaches 

Batch-wise unfolding puts all the variables at all time lags 
into one row and then mean centers to remove the average 
trajectories. A PCA or PLS model then provides different 
loadings or weights for every deviation variable at every time 
point throughout the duration of the batch. As a result the 
latent variable model captures the time-varying nonlinearities 
throughout the batch as a locally linear model at every time 
point.  Therefore, this BWU approach offers the considerable 
advantage of capturing the time varying nonlinearities that 
can be useful for control.  However, the data requirements to 
identify these BWU latent variable models at the high 
sampling frequencies required for trajectory tracking control 
present a problem. The number of loading parameters 
required to capture the locally varying dynamic effects is 
large and the number of multivariate observations (batches or 
rows) available for the model building is usually not large. 
The variance of the resulting loadings is therefore large 
thereby making the PCA model non-smooth and leads to 
non-smooth trajectory tracking. Although the use of many 
observations (batches) smoothens these local effects and 
makes the aforementioned problem minimal, with the normal 
number of observations this problem exists. Thus, the batch-
wise unfolding approach needs a large number of batches to 
build a PCA model. This requirement is the biggest 
bottleneck in modeling batch processes using batch-wise 
unfolding approach for trajectory tracking control. (Note that 
this is usually not a problem for the traditional batch data 
anlaysis, monitoring and end-point control problems where 
the sampling and control frequencies are much lower).  

On the other hand, in the observation-wise with time-lag 
unfolding approach one gets a huge number of observations 
using even 1 batch and one only has to identify an average 
finite ARX model for the whole batch . As shown in figure 2, 
the total number of observations resulting from each batch is 
K-ph-fh. For example, for a batch with 300 sample times and 
using a typical value for ph and fh which is 20 each, one 
batch results in 260 observations which are much more than 
enough for building a PCA model. The main drawback of 
this algorithm is that it is an average model for the batch and 
cannot handle time varying, nonlinear behavior. 

2.3 Regularized batch-wise unfolded models (RBWU)  

In this section a third modeling approach is proposed that 
tries to capture the major benefits of the above two modeling 
approaches, while avoiding the problems of each one. The 
new unfolding approach uses elements from both of the 
preceding approaches. It unfolds batch-wise but also repeats 
each batch row L times each time shifted by one sampling 
interval. A schematic of the batch-wise with time-shifting 
approach is shown in figure 3. The parameter L is the number 
of time shifts used. It can be thought of in two ways.  One 
can start with BWU shown in Fig. 1 and then replicate each 
row L times while shifting it by one interval in each case.  
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Alternatively one can start with OWU with time lags shown 
in Fig. 2 and use the past and future horizons (ph, fh) to cover 
the (K-L) time steps of the batch in each row and use only L 
block rows.  

If L=0 (no shifting) this unfolding is simply BWU.  But if a 
small number of shifts (L>0) are used this approach will 
retain most of the advantages of the BWU approach 
(capturing time-varying, non-linear behavior), but the model 
at each time interval will be averaged over L time periods 
thereby having some of the advantages of the OWTU.  For 
example, if L is small (e.g. L=5) and the number of time 
intervals K>300, this will not seriously affect the capturing of 
any time-varying behavior, but it will reduce the variance of 
the latent variable model loadings (by a factor of L) since 
these loadings at each time point will now be averaged over L 
local time periods. The time shifting effectively provides a 
regularized BWU latent variable model where the loading 
estimates are effectively averaged over a window of L local 
time periods. The resulting model will therefore have a 
smoother variation in the loading coefficients with time.  This 
regularized BWU latent variable model should thus provide 
smoother model predictive trajectory tracking control. A 
much similar regularization of the latent variable model could 
be achieved by performing PCA or PLS with constraints on 
the rate of change or smoothness of the loadings from one 
time interval to the next.  However, this would lead to a non-
linear modification of the latent variable estimation 
algorithms with essentially the same result as achieved by 
using this simple time shifting with the standard algorithms.   

 

Fig. 3. Regularized Batch-wise unfolding approach 

To show how the batch-wise with time-lag unfolding 
approach leads to regularized PCA, the batch-wise unfolded 
matrix in the Fig.1 is defined as: 

1 1 2[ , ,..., ]KX a a a     (1) 

Where a1,..aK are matrices of measured variables at sample 

times 1,…K (blocks in Figs. 1b and 3, I J
ia  ). Then, 

the corresponding Batch-wise with Time-lag unfolding 
approach can be shown as: 
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Hence, 
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Where X1,i:K-j means the blocks “i” to “K-j” of matrix X1. The 
above equation shows that the covariance of the resulting 
matrix from the batch-wise with time-shifting approach is an 
average of the original covariance matrix over L sample 
times. Thus, the resulting covariance matrix is a regularized 
of the original covariance matrix.  

A benefit of the observation-wise with time-lag unfolding 
approach was that using this type of unfolding the batch can 
be modeled using only 1-3 batch runs (although one only 
obtains an average  model for the batch). However, with this 
regularized approach we get some of the same benefit 
without the liability. For example by using 20 batches and L= 
5-10 one can get 100-200 observations (rows) in the unfolded 
matrix which is perfect for implementing Multiphase LV-
MPC (MLV-MPC) proposed in Golshan et al. (2009a). In 
general the choice of the number of time shifts (L - the 
regularization parameter) will depend upon the rapidity of the 
time varying behavior of the batch versus the number of 
batches available for the model identification. 

2.4 Multi-phase Modeling 

LV modeling of batch processes for trajectory tracking 
control using the batch-wise unfolding approach leads to a 
very large global LV model because of the large number of 
time intervals over the batch duration. This is not desirable as 
it requires many latent variables (which implies many batches 
may be needed in the training set), it leads to ill-conditioned 
matrices in the model used during the control computations, 
and does not focus on the local behavior of the trajectories. 
Therefore, utilization of multi-phase LV models, as presented 
in Golshan et al. (2009a) is necessary or at least preferred. 
The multiphase modeling approach is based on identifying 
multiple phases within the batch, partitioning of the dataset 
according to phases, considering overlap between two 
adjacent phases, and building PCA models for each phase. 

The same multiphase modeling approach is applicable to a 
batch-wise with time-shifting unfolded dataset (regularized 
BWU model). The resulting matrix from batch-wise unfolded 
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model with time-shifting is considered as a new batch-wise 
unfolded matrix and the multiphase modeling is performed. 

However, for the observation-wise with time-lag unfolding 
approach multiphase modeling has both good and bad effects 
and application of multiphase models may not always 
improve the results. The observation-wise with time-lag 
unfolding approach by its definition is applicable to the 
processes that are not highly time-varying and whose 
behavior can be modeled by an average dynamic model. 
When the process is time-varying, the observation-wise with 
time-lag unfolding approach can be applied in multi-phase 
framework. However, as explained in Golshan et al. (2009b), 
it results in switching between different local models. This 
switching manner may cause some inconsistencies at the 
switching times that lead to performance deterioration for a 
transient period. 

2.5 Identification 

The training data can be the data from the previous batches 
run under normal conditions augmented with additional 
batches executed according to identification experiments to 
provide information on the causal relationships between the 
manipulated variables and the controlled variables at every 
time interval throughout each phase. The direct identification 
approach based on closed loop data is used in this study. 
Closed loop identification is preferred over open loop 
identification for batch processes in order to maintain the 
process close to its desired trajectories and to minimize the 
final product quality variations. A Random Binary Signal 
(RBS) is added on top of the manipulated variable trajectories 
coming from an existing controller (PID) to provide some 
additional excitation of the process. The RBS dither signal is 
chosen to have its switching frequency in a suitable range (~ 
1/6-1/3 of the dominant time constant of the process). The 
closed-loop design of identification experiments for 
identifying models of time varying, finite duration batch 
systems has not been discussed in the literature, but is the 
topic of current research by the authors.  Therefore, we do not 
go into the identification issues in this paper except to note a 
few qualitative issues and some observations from the 
simulation studies presented below. In this study it was found 
that if the observation-wise with time-lag unfolding approach 
is used, models were identifiable from historical batches 
under pure feedback control with no additional excitation. 
This somewhat surprising result might be explained by 
analogy with the closed-loop identification of linear time-
invariant systems (Ljung, 1999).  There it has been shown 
that closed-loop identifiability is satisfied if one switches 
between a sufficient number of linear controllers or if the 
control is nonlinear.  Here the batch system is non-linear and 
time varying and so with a fixed PID controller it is 
analogous to the controller being time varying or nonlinear 
for a linear system. Furthermore, there are time-varying 
setpoints in the training data generation that also helps to 
satisfy the identifiability conditions. But, this is for the 
modeling approach based on observation-wise with time-lag 
unfolding approach which is a linear time-invariant model 
over an entire batch phase. However, for the other 2 

modeling approaches (based more on BWU) where the time-
varying behavior is being modeled, these conditions may not 
be enough to ensure identification of an adequate model (with 
no fixed underlying true model identifiability conditions are 
not clearly defined). The historical batch data are very 
important for providing models for the effects of inherent 
disturbances in the batch process and their influence on the 
behavior of the evolving trajectories. This information is 
essential for the prediction of the future trajectories and 
ensuring no steady state offset in the control as discussed in 
the next section.  

Another important issue in the selection and design of 
identification experiments is the inclusion of experiments 
using somewhat different set-point trajectories. This is 
mainly of importance if the MPC is to be required to track a 
range of set-point trajectories such as might be needed for 
achieving different grades of the product. In practice, 
historical batch data would usually be available on these 
different grades and could be included in the training data.  

3. CONTROL METHODOLOGY  

In order to assess the performance of the aforementioned 
modeling approaches, they are used in the course of a 
trajectory tracking control problem. The selected control 
algorithm is the recently proposed Latent Variable Model 
Predictive Control (LV-MPC) (Golshan et al. 2009a). The 
Control objective is to find an optimal manipulated variable 
path to make the controlled variable track its desired 
trajectory. Two control formulations are proposed in Golshan 
et al. (2009a). However, for the sake of briefness, one of 
them that the three modeling approaches are tested by is 
briefly explained in this paper. 

Assume the control algorithm is in the middle (sample time 
k) of a new batch and ζk is defined by equation (5).  

, , , ,[ , , , ] T T T T T
k me k cv k c k sp kx y u y    (5) 

Where xme, ycv, uc, and ysp are measured variables, controlled 
variables, manipulated variables, and set point variables 
respectively. The existing information in the current batch 
can be rearranged as follows: 

1: 1 , , , , 1,...,
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    

      
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 (6) 

The corresponding loadings, P matrix in the PCA model, can 
also be separated in the same way. The past data can be used 
to estimate the score of the current batch, τk, which 
summarizes the current position of the batch using missing 
data imputation methods (Arteaga and Ferrer, 2002). Then a 
correction to the score, 

k̂  can be computed to bring the 

batch trajectories closer to their desired values by optimizing 
the following quadratic objective: 
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Comparing equations (7) and (6), ycv and ysp correspond to xf2 
and xp2 respectively. Using the PCA model it can be shown 
that xf2 and uf can be written as a function of the decision 
variable, 

k̂ (Golshan et al., 2009a): 

   1

2 2 ,ˆ ˆ ˆ   T T
f f f f k k p p kx P P P P x 


     (8) 

ˆ ˆ ˆ( )f uf k ku P   
  

  (9) 

 Combining equations (7), (8), and (9) and following 
optimization procedures, one can obtain the optimum

k̂ . 

k̂ contains information on the adjustments to all future 

inputs till the end of the batch (“infinite” horizon control 
Golshan et al. ,2009a). The corresponding uf can be computed 
using the PCA model relationship in equation (9). Then 
according to MPC algorithm its first element is implemented 
to the process. At the next sample time the same procedure 
will be repeated.   

It should be noted that in this control method, it is possible to 
either solve the optimization problem analytically, if there is 
no hard constraint, or solve it by numerical optimization 
methods, in case of existence of hard constraints. However, 
constraints are generally much less of a problem in batch 
processes. 

In the above control formulation the LQ matrices (V1 and V2) 
should be chosen carefully. V1 is a diagonal matrix that can 
be exponentially weighted to put stress on the early future 
values rather than the far values. However, V2 matrix should 
be a derivative matrix to penalize the changes in the MV’s. 

4. SIMULATION RESULTS 

The case study presented in this paper is a MIMO control 
problem in which temperature and pressure of a Nylon 6,6 
polymerization reactor is controlled using the pressure of 
steam flow in the jacket and vent rate through the valve on 
top of the reactor. This is a constrained problem in which the 
vent rate cannot be less than zero and the steam pressure 
cannot be less than 4 psi and more than 52 psi. A schematic 
of these case studies are shown in Fig.5. For detailed 
information see Russell et al. (1998). 

 

Fig. 5. Schematic Diagram of the Nylon 6,6 problem 

In order to explore the full comparison of the modeling 
approaches many different scenarios have been tested. 
Though, Due to the space limitation only one example from 
each modeling approach is presented in this paper. The 
results of applying the LV-MPC to this case study are sorted 
in Figs. 6-8 and table 1. In all cases the model identification 
was performed using closed-loop data.  

 
Fig.6. Control based on batch-wise unfolding modeling 

approach 

 

Fig.7. Control Based on Observation-wise with Time-lag 
unfolding modeling approach 

 

 

Fig. 8. Control Based on Batch-wise with Time-shift 
unfolding modeling approach 

Table 1.  LVMPC on the MIMO Nylon 6,6 Process based 
on three modeling approaches 

Performance 
Index 

BWU OWTU RBWU 

RMSE(yT-ysp,T) 1.0417 1.2043 1.0982 
STD(∆uT) 0.4667 0.4709 0.4425 

RMSE(yp-ysp,p) 2.9918 2.8300 2.8214 
STD(∆up) 43.9659 43.2539 43.3021 
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Where RMSE is the abbreviation for root mean square error 
and STD represents the standard deviation. Fig. 6 shows that 
the multi-phase batch-wise unfolding approach with 10 
phases of equal size and 30 batches in the training dataset 
leads to a good tracking of the reference trajectory. However, 
as mentioned before, too many batches need to be used for 
identification which may not exist in practical situations.  

Inadequate number of batches may lead the practitioner to 
use the observation-wise with time-lag unfolding approach. 
The performance of the observation-wise with time-lag 
unfolding approach using one phase throughout the batch and 
2 observations in the training dataset is shown in Fig.7. The 
tracking quality of the temperature loop is slightly worse than 
that in Fig. 6. More oscillations in tracking may result 
because of the average time invariant model for the whole 
batch that this method leads to. The case study is a time 
varying process, and one phase may not be sufficient to 
model this process. Though, as explained before, the 
inconsistencies caused by switching between different 
models on this specific process decrease the quality of the 
LV-MPC performance. After running a few batches, one may 
switch to BWU or regularized BWU. However, this modeling 
approach has the least data requirements for modeling. 
Moreover, it requires only the data of the current PI controller 
that is running the process without any additional excitation 
by dither signal (only historical batches). 

Fig.8 illustrates the performance of the LV-MPC based on 
the batch-wise with time-shift unfolding approach using 10 
phases, 15 observations, and 5 time shift units (L=5). It tries 
to compensate the shortcomings of both previous modeling 
approaches. It requires fewer observations and produces a 
smoother tracking as compared to the BWU modeling 
approach. In fact, when the number of observations is large 
or the process does not have large noises (as is the case for 
this process) the difference between the batch-wise and 
batch-wise with time-shift unfolding approaches becomes 
minimal as explained in section 2.2. However, in the above 
examples, regularized BWU needs half of the observations 
(batch runs) used in the training dataset of BWU, but gives 
better trajectory tracking. 

5. CONCLUSIONS 

Modeling of batch processes from the view point of its 
application for trajectory tracking control is scrutinized. In 
this paper, the previously proposed modeling approaches 
(Golshan et al., 2009b) are investigated in more details. BWU 
is more suitable for modeling the nonlinearity and time-
varying characteristics of batches, but needs a large number 
of batch runs in the training dataset. Otherwise, noisy 
trajectory tracking is obtained. On the other hand, the OWU 
with time-lag unfolding approach requires as few as 2 batches 
in the training dataset and yields a smooth PCA model. 
However, it leads to modeling an average process dynamics.  

The proposed regularized batch-wise modeling approach tries 
to capture the advantages of BWU and OWTU approaches 
while avoiding their disadvantages. In this paper, the BWU, 
OWTU, and Regularized BWU are tested in the course of the 

recently proposed LV-MPC methodology (Golshan et al., 
2009a) on a MIMO case study. The results show that the 
regularized BWU modeling approach leads to superior 
trajectory tracking. This approach leads to a smooth 
(regularized) PCA model which in turn leads to a smoother 
trajectory tracking. Furthermore, it requires fewer batch runs 
in the dataset as compared with BWU modeling approach. 
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