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Abstract: In this paper, we analyze the identifiability properties of a Hodgkin-Huxley (HH)
type voltage dependent ion channel model under voltage clamp circumstances. The elimination
of the differential variables is performed, and the identifiability of various parameters is analyzed
using the differential algebra approach and the algorithm based on the Taylor series expansion
of the output. It is shown that the model is structurally non-identifiable using certain commonly
applied parametrizations, and hidden dependences between physical parameters are unravelled.
Using the results of the identifiability analysis, physically meaningful examples are shown when
the model parameters are different but the system outputs are identical.

Keywords: Modeling and Identification; Control Applications in Biological Processes

1. INTRODUCTION

The aim of the paper is to present structural identifia-
bility results for simple ion channel models under volt-
age clamp measurement conditions. The Hodgkin-Huxley
(HH) model form of membrane currents and cell electro-
physiology is widely used for modeling excitable cells such
as neurons [Hodgkin and Huxley, 1952]. HH models that
are essentially nonlinear electric circuit models, are com-
posed of parallel voltage dependent or independent con-
ductances that correspond to different membrane currents.
The dynamical descriptions of neuronal behavior, ranging
from the fundamental theoretical principles [Izhikevich,
2000, 2003, 2005] to the wide range of applications with
special focus [Shorten and Wall, 2000, Komendantov et al.,
2007, Roth and Hausser, 2001, Borg-Graham et al., 1998,
Fletcher and Lee, 2009], are predominantly based on this
model class.

Once the model structure is fixed, the next key step of
the modelling process is parameter estimation, the qual-
ity of which is crucial in later usability of the obtained
model [Ljung, 1987]. The identifiability properties of the
system describe whether there is a theoretical possibil-
ity for the unique determination of system parameters
from appropriate input-output measurements or not. Basic
early references for studying identifiability of dynamical
systems are the books [Walter, 1982, 1987]. The study and
development of differential algebra methods, that are used
for identifiability analysis, contributed to the better un-
derstanding of important system theoretic problems [Diop
and Fliess, 1991, Fliess and Glad, 1993]. The most impor-
tant definitions and conditions of structural identifiability
for general nonlinear systems were presented in [Ljung and
Glad, 1994] in a very clear way. Further developments in

the field include the identifiability conditions of rational
function state-space models [Margaria et al., 2001] and the
possible effect of special initial conditions on identifiability
[Saccomani et al., 2003].

For process systems Rodriguez-Fernandez et al. [2007]
have clearly shown that prior structural identifiability
analysis is an important step in the solution of model cal-
ibration problems. Davidescu and Jorgensen [2008] solves
the problem of structural parameter identifiability for
chemical reaction network models. Following this line,
this paper presents the first study of identifiability of HH
models.

Although several articles have been published which are
focusing on parameter estimation problem in the case of
HH based models under various assumptions, see [Tabak
et al., 2000, Tabak and Moore, 1998, Willms et al., 1999,
Tien and Guckenheimer, 2008, Lee et al., 2006, Huys et al.,
2006], there is a lack of literature data which addresses the
identifiability properties of such models.

Both the articles [Lee et al., 2006] and [Willms et al.,
1999] recognized the problems of the conventional esti-
mation algorithms, and provided improved methods for
the estimation of HH models. Lee et al. [2006] proposed a
new numerical approach to interpret voltage clamp exper-
iments. As one of the main results of [Lee et al., 2006], it
is stated, that all channel parameters can be determined
from a single appropriate voltage step, but no rigorous
proof has been provided.
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2. HODGKIN-HUXLEY TYPE MATHEMATICAL
MODELING OF ION CHANNELS

The basic modelling assumptions of the HH model, which
are based on the kinetic description of the behavior of
multiple voltage-dependent subunits [Hille, 2001], are ev-
ident and well formulated from the physical perspective.
In contrast, if we analyze the model from the point of
view of systems theory, as a nonlinear state-space model
(a system of nonlinear ordinary differential equations,
ODE’s), several interesting questions arise, related not
only to the bifurcation structure of the model, but also
to the identifiability properties of the system class.

2.1 Ion channel model

We consider a simple hypothetical ion channel with one
activation (m) and one inactivation variable (h). The cur-
rent, which is the measured variable, is simply described
by

I = gmpmhph(V − E) (1)
where V is the voltage, g is the maximal conductance,
and E is the reversal potential of the corresponding ion.
The exponents pm and ph correspond to the number of
independent activation and inactiovation subunits of the
voltage channel protein. We will assume the simplest case
in our calculations when pm = ph = 1. Both m and h
are state variables in the following nonlinear state-space
model

dm

dt
=

m∞(V ) − m

τm(V )
(2)

m∞(V ) =

(

1 + exp

(

V1/2m − V

km

))

−1

, km > 0 (3)

1

τm(V )
=

(

cbm + camexp

(

−
(VMaxm − V )2

σ2
m

))

−1

(4)

dh

dt
=

h∞(V ) − h

τh(V )
(5)

h∞(V ) =

(

1 + exp

(

V1/2h − V

kh

))

−1

, kh < 0 (6)

1

τh(V )
=

(

cbh + cahexp

(

−
(VMaxh − V )2

σ2
h

))

−1

(7)

where V1/2m, km, V1/2h, and kh are the parameters of
the Boltzmann functions which describe the steady state
activation and inactivation values. cbm, cam, VMaxm, σm,
cbh, cah, VMaxh and σh denote the parameters of Gauss-
functions which describe the voltage dependent time-
constants.

We have to note that the approximation of the steady state
values with Boltzmann functions is not always valid, as it
is described in [Willms et al., 1999]. However in the rest of
this paper we assume that this consideration holds. It can
be said that in the literature the use of Boltzmann-type
sigmoid functions for the description of steady-state values
is widespread, but not exclusive (see e.g. Komendantov
et al. [2007]).

The description of the voltage dependent time constants
in the literature is more diverse. In fact, the variability of
time constant curves corresponding to various rate con-
stant functions is described in [Willms et al., 1999]. In this

study we will use standard Gauss functions, parameterized
by cbm, cam, VMaxm, σm, cbh, cah, VMaxh and σh.

2.2 Voltage step protocol

In general, two basic measurement protocols are used
for parameter estimation of neuronal models: The volt-
age clamp protocol, when the voltage is fixed and the
transmembrane currents are measured, and the current
clamp protocol, in which case an arbitrary value of injected
current to the cell is fixed.

In the case of voltage clamp, where the voltage is held
constant, the only remaining differential variables are the
activation and inactivation variables.

An important subcase of the voltage clamp method is when
the voltage, which is in this case the manipulable input (u)
to the system, is held constant (V = V0 = u, u̇ ≡ 0) during
a known time interval. In this case the constant values of
m∞, h∞, τm and τh can be considered as parameters in
addition to g and E. This implies that the non-polynomial
nonlinearities of Boltzmann and Gauss functions vanish
from the equations, and the model will fall into the class
of polynomial systems, which makes the application of
computer algebra based software tools (e.g. [Bellu et al.,
2007]) possible for identifiability testing.

We will denote the voltage independent nature of the
above parameters shortly as follows

m∞(V ) = m∞(V0) = m∞ (8)

1

τm(V )
=

1

τm(V0)
=

1

τm
(9)

h∞(V ) = h∞(V0) = h∞ (10)

1

τh(V )
=

1

τh(V0)
=

1

τh
(11)

In this case Eqs. (1-7) simplify to the equations below:

I = gmh(V0 − E) = gmh(u − E) (12)

y = I, u = V0

dm

dt
=

m∞ − m

τm
(13)

dh

dt
=

h∞ − h

τh
(14)

where the model parameters are E, m∞, τm, h∞ and τh.

3. BASIC NOTIONS ON STRUCTURAL
IDENTIFIABILITY

In general, let us consider the following class of models

ẋ = f(x, u, θ), x(0) = x0 (15)

y = h(x, u, θ)

where x ∈ R
n is the state vector, y ∈ R

m is the output, u ∈
R

k is the input, and θ ∈ R
d denotes the parameter vector.

We assume that the functions f and h are polynomial
in the variables x, u and θ. We have to note that the
HH model class in general is non-polynomial, but under
the circumstances of the voltage step protocol, it can
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be casted into this class. Furthermore, it can be shown
[Hernández-Bermejo and Fairen, 1997] that majority of
nonlinear state-space models with smooth right-hand sides
can also be embedded in the above polynomial model form.

Shortly speaking, global structural identifiability means
that

y(t|θ′) ≡ y(t|θ′′) ⇒ θ′ = θ′′ (16)

where

y(t|θ) = h(x(t, θ), u(t), θ) (17)

and x(t, θ) denotes the solution of (15) with parameter
vector θ. This means that if the system outputs are
identical, then the underlying parameters are the same:
this is a model property, e.g. the property of (15).

The following notations, definitions and conditions are
mostly taken from [Ljung and Glad, 1994]. Let us denote
a differential polynomial F (u, u̇, . . . , y, ẏ, . . . ) by F (u, y; p)
where p = d

dt .

The structure (15) is globally identifiable if and only if
by differentiating, adding, scaling and multiplying the
equations the model can be rearranged to the parameter-
by-parameter linear regression form:

Pi(u, y; p)θi − Qi(u, y; p) = 0 i = 1, . . . , d (18)

It is visible from (18) that θi can be expressed as

θi =
Qi(u, y; p)

Pi(u, y; p)
i = 1, . . . , d (19)

if Pis are non-degenerate. The non-degenerate condition
can be fostered by ensuring that the inputs excite the
system dynamics sufficiently so that the parameter vector
can be determined in a numerically well-conditioned way.

3.1 Structural identifiability analysis using Taylor series
expansion of the output

Consider again the nonlinear model structure in (15).
Walter and Pronzato [1996] gives the following condition
for global structural identifiability, that is based on the
Taylor series expansion of the system output. Let

ck(θ) = lim
t→0+

dk

dtk
y(t, θ) (20)

Then a sufficient condition of global structural identifia-
bility is

ck(θ1) = ck(θ2), k = 0, 1, . . . , kmax, =⇒ θ1 = θ2 (21)

where kmax is a positive integer (small enough for the
symbolic computations to remain tractable). It is impor-
tant to remark that the lack of global solvability of ck for
the system parameters in the case of a given k value is
generally not enough for proving non-identifiability, since
the inclusion of higher derivatives (new ck-s) may result
in the solvability of the corresponding system of nonlinear
equations.

4. STRUCTURAL IDENTIFIABILITY OF ION
CHANNEL MODELS

4.1 Identifiability analysis using differential algebra

The identifiability analysis requires to eliminate the differ-
ential (state) variables m and h from the model Eqs. (12)-
(14) and then to find the parameter groups that can be

determined from the resulting equations. For convenience,
let us introduce the following parametrization:

x1 = m, x2 = h

p1 =
1

τm
, p2 = m∞, p3 =

1

τh
(22)

p4 = h∞, p5 = g, k1 = u − E

It can be seen that the physical system parameters are
trivially computable, if p1, . . . , p5 are given. In general, we
assume that k1 is known, and we are searching for the
largest subset in {p1, . . . , p5} that is globally identifiable.
Using eq (22), the state and output equations of the simple
model can be written as

ẋ1 = p1(p2 − x1), ẋ2 = p3(p4 − x2) (23)

y = k1p5x1x2 (24)

To get a pure input-output relation, we have to eliminate
the state variables from eqs. (23)-(24). For this, the time-
derivative of y is taken that gives

ẏ = (−p1 − p3)y + k1p5p3p4x1 + k1p5p1p2x2. (25)

By taking the second derivative of y with respect to time,
the following equation is obtained

ÿ = (−p1 − p3)ẏ − k1p5p1p3p4x1 − k1p1p1p2p3x2

+ 2k1p1p2p3p4p5 (26)

It can be observed that both eqs. (25) and (26) depend
linearly on x1 and x2, therefore the state variables can be
expressed from them and substituted to te original output
equation (24) in a straightforward way. This shows that
the system is algebraically observable [Diop and Fliess,
1991, Bellu et al., 2007] in this case. The expression and
substitution results in the following lengthy input-output
relation

0 = (−a0 − a1a5 − a1a3)y − (a1a4 − a1a2)ẏ

− 2a1ÿ + (a2a5 + a3a4)yẏ + (a2 + a4)ẏÿ + (a3 + a5)yÿ

+ a3a5y2 + a2a4ẏ2 + ÿ2 + a2
1 (27)

where a0, . . . , a5 are defined as

a0 = (p2
3 − p1p3)(k1p2

1p2 − k1p1p2p3)
2p4p5,

a1 = 2k1p1p2p3p4p5, a2 = 2p1 + p3

a3 = p2
1 + p1p3, a4 = p1 + 2p3, a5 = p1p3 + p2

3 (28)

The coefficients in eq. (27) define the following set of
equations

−a0 − a1a5 − a1a3 = c1 (29)

−a1a4 − a1a2 = c2 (30)

−2a1 = c3 (31)

a2a5 + a3a4 = c4 (32)

a2 + a4 = c5 (33)

a3 + a5 = c6 (34)

a3a5 = c7 (35)

a2a4 = c8 (36)

a2
1 = c9 (37)

The solvability of eqs. (29)-(37) with respect to the pa-
rameters p1, . . . , p5 can be checked by e.g. Buchberger’s
algorithm (see, e.g. Saccomani et al. [2003]). Using this
method, the following parameter-pairs can be shown to
be globally identifiable: (p1, p2), (p1, p4), (p1, p5), (p2, p3),
(p3, p4), (p3, p5). The following parameter combinations
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turned out to be locally identifiable (with 2 possible solu-
tions for each): (p1, p3), (p1, p2, p3), (p1, p3, p4), (p1, p3, p5).

For comparison, the identifiability analysis technique
based on the Taylor series expansion of the output has
been applied, too, that is described in the following sub-
section.

4.2 Structural identifiability analysis using the Taylor
series method

To keep the original physical parameters (or their sim-
ple transformations), let us use the previously defined
parametrization (22) of the ion-channel-model

The solution of the state equation (23) is easy to give with
zero initial condition:

x1(t) = −p2e
−p1t + p2 (38)

x2(t) = −p4e
−p3t + p4 (39)

From this, the output and its successive derivatives are
given by

y(t) = k1p2p4p5(1 + e−(p1+p3)t − e−p1t − e−p3t)

ẏ(t) = k1p2p4p5(−(p1 + p3)e
−(p1+p3)t + p1e−p1t + p3e−p3t)

. . . (40)

y(k)(t) = k1p2p4p5((−1)k(p1 + p3)
ke−(p1+p3)t+

+ (−1)k+1(pk
1e−p1t + pk

3e−p3t)), k ≥ 1.

From Eq. (40), the coefficients ck(θ) can be computed as

c0(θ) = 0

. . . (41)

ck(θ) = k1p2p4p5((−1)k(p1 + p3)k+

+ (−1)k+1(pk
1 + pk

3)), k ≥ 1.

By the symbolic solution of (41), the following param-
eter pairs were found to be globally identifiable: (p1, p5),
(p1, p2), (p3, p2), (p3, p5), (p1, p4), (p3, p4). The pair (p1, p3)
was found to be locally identifiable with 2 possible so-
lutions as well as the triplets (p1, p3, p5), (p1, p3, p4),
(p1, p3, p2)

Brief comparison of the results obtained by the two methods
The necessary symbolic computations for both methods
were performed using the freely available Sage software
environment (see. e.g. Stein and Joyner [2005], Beezer
[2009]). The two methods gave exactly the same globally
and locally identifiable parameter combinations. An ad-
vantageous property of the differential algebra approach is
that eq. (27) defines a possible convex parametrization of
the model which can be very useful in practical parameter
estimation. However, the smaller set of nonlinear equations
in the case of the Taylor series method was much more
easily tractable with symbolical software. Furthermore,
it can be conjectured from the closed form of eqs. (41)
that neither (p2, p4, p5), nor any pair from these three
parameters can be globally identifiable.

5. EXAMPLES ILLUSTRATING THE LACK OF
GLOBAL IDENTIFIABILITY

In this section, we show physically meaningful examples
that illustrate the non-global identifiability of the ion chan-
nel model with respect to the three parameters (namely,

g, m∞, and h∞) that often have to be estimated. Other
model parameters are assumed to be known in the exam-
ples

5.1 Identifiability of g, m∞ and h∞ at constant input
voltage

To check and support our former hand calculations in sec-
tion 4.1, we used the differential algebra software DAISY
[Bellu et al., 2007]. Firstly, the output of DAISY showed
that the model is algebraically observable, which is in good
agreement with our results regarding the elimination of
differential variables. Secondly, according to the identifia-
bility results of the analysis, the parameters m∞, h∞ and
g (i.e. p2, p4, p5) are not globally identifiable. Moreover, no
pair from these three parameters are identifiable. This fact
also matches the results of sections 4.2 and 4.3 where we
couldn’t show that these three parameters (or any two of
them) are identifiable under voltage clamp measurement
conditions. These results are trivial in the case of steady
state, when m = m∞ and h = h∞, because in this case
only the product of the three parameters appears as output
in y = I = gmh(V − E). However, the dependence also
holds during the transient period.

In the following, we present an interesting example il-
lustrating non-identifiability when the parameters of the
system are different, but the outputs of the two systems
are identical. The key issue for this counterexample is
the appropriate modification of the initial values of the
state variables. The free choice of initial values is not too
realistic in the case of voltage clamp measurements, but
this calculation will help us to provide a more realistic
counterexample in the following subsection.

The inactivation steady-state values, the time parameters
and the reversal potential were the same in the two cases:

h∞ = p4 = 0.75, VMaxm = −78mV, σm = 34,

cam = 8.7ms, cbm = 0.8ms, E = −93mV,

VMaxh = −23mV, σh = 24, cah = 6.9ms, cbh = 9ms (42)

Parameter set 1 In the first case, in addition to the
parameters in (42), p2 was defined as 0.2 and p5 was chosen
to be 67 nS. The initial values of the state variables were
x1(0) = 0.35, x2(0) = 0.25. The current I = y is measured
in pA units. The trajectory of the state-space variables can
be expressed as:

x1 = p2 + (x1(0) − p2)e
−p1t

x2 = p4 + (x2(0) − p4)e
−p3t (43)

The current can be computed as

y(t) = p5k1(p2 + (x1(0) − p2)e−p1t(p4 + (x2(0) − p4)e
−p3t (44)

Parameter set 2 In the second case, the parameters which
are considered unknown were changed as follows (the
superscript ∗ refers to case 2). Let us introduce a scaling
parameter λ > 0. p∗2 = λ · p2 = 0.3 and p∗5 = p5/λ. The
initial values of the state variables were x∗

1(0) = λ · x1(0),
x∗

2(0) = x2(0) = 0.25. The current can now be written as

y∗(t) = p∗5k1x∗

1x∗

2

= k1p∗5(p∗2 + (x∗

1(0) − p∗2)e−p1t)(p4 + (x∗

2(0) − p4)e
−p3t) (45)

= k1
p5

λ
(λp2 + (λx1(0) − λp2)e−p1t)(p4 + (x2(0) − p4)e

−p3t)

= y(t)
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It is clearly visible from Eq. (45) that the measured mem-
brane current can be the same when the time functions of
the state variables are different.

This analysis shows that under the measurement con-
ditions of constant voltage, known time constants and
reversal potential, together with unknown initial values
of state variables, it may be theoretically impossible to
uniquely determine the parameters m∞, h∞ and g from a
single measurement record.

The above case is not likely in the case of a standard
voltage clamp protocol, where the voltage is held at
an other constant value (the holding potential Vhold)
before the voltage step. The holding potential determines
the initial values of the differential variables: m(0) =
m∞(Vhold) and h(0) = h∞(Vhold)). However, the scenario
is not impossible, as we will show in the following example.

5.2 Identifiability of g, m∞ and h∞ in the case of a single
voltage step

Based on the previous results, we will show in the case
of two fictitious neurons that the measurable current re-
sponses of a voltage step during voltage clamp measure-
ment can be identical in the case of different parameters.
In this case, we relax the former assumption that the input
voltage is constant during the experiment. This means that
we will use the original nonlinear ion channel model given
by Eqs. (1)-(7). According to our aim, we shall tune the ac-
tivation and inactivation characteristics of the neurons in
a way that they should reproduce the preliminary defined
values at certain voltage values.

First we will consider a case when the activation and
inactivation characteristics will determine the same initial
values. Let us suppose that both neurons to be compared
here inhibit only one ion channel, and the activation
and inactivation characteristics of the first neuron are
described by

m∞(V ) =

(

1 + exp

(

V1/2m − V

km

))

−1

(46)

h∞(V ) =

(

1 + exp

(

V1/2h − V

kh

))

−1

The second neuron is characterized by the functions
m∗

∞
and h∗

∞
with parameters V ∗

1/2m, k∗

m, V ∗

1/2h, k∗

h. The

parameter values for the two neurons can be found in
Table 1. The parameters of the voltage dependent time
constants in both cases are the same as in Parameter set
1 in subsection 5.1.

Table 1. Parameters of the two neurons

No V1/2m km V1/2h kh g

1 -31.932 mV 13.033 -44.354 mV -5.139 67 nS
2 -41.056 mV 10.555 -44.354 mV -5.139 44.67 nS

The voltage dependent characteristics are shown in Fig. 1

As seen in in Fig. 1, the value of m∞ is 0.35 at -40mV and
it is 0.20 at -50mV. At the same time, the value of m∗

∞
is

0.525 at -40mV and 0.30 at -50mV. The inactivation curve
is the same in both cases. We apply a holding potential of
-40 mV and a voltage step to -50 mV at t=100ms.
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Fig. 1. Voltage dependences of m∞, m∗
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The comparison of trajectories of activation and inactiva-
tion variables and the output (the measured current) are
depicted in Fig. 2. The figure shows that the outputs are
identical in the two cases, although the parameters of the
two models are different.
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Fig. 2. The activation and inactivation variables, and the
output during the voltage step in the case of neuron
1 and 2. The upper index ∗ refers to the activation
and inactivation variables of neuron 2. The measured
output current traces are identical in both cases.

6. CONCLUSIONS

The identifiability of a simple ion channel model used in
Hodgkin-Huxley type neuron models was studied in this
paper. Under constant input voltage conditions, the origi-
nally nonlinear state equations became essentially linear
(with a constant drift term that can contain unknown
parameters), and the only nonlinearity remained in the
output equation.

Using this simple model structure, two approaches, namely
the differential algebraic method and the algorithm based
on the Taylor series expansion of the output were applied
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to investigate structural identifiability. Both methods re-
quire the symbolic solution of nonlinear equations to get
identifiability results. It was shown that that the two meth-
ods usefully complement each other in the identifiability
analysis. Based on the analysis results, two illustrative
cases were shown (with different assumptions) when the
system parameters are different and physically meaningful,
while the outputs are identical.

Further work will be focused on the treatment of the situ-
ation when the output contains higher powers of the state
variables, and on the identifiability analysis of systems
containing more than one ion channel.
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