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Abstract: Here we consider the problem of optimal manipulation of biological or biotechno-
logical systems, formulated as a class of mixed-integer optimal control problems. We describe
the current state of the art regarding the numerical solution of these problems, and a software
implementation developed in our group (DOTcvp toolbox, based on Matlab).
DOTcvp combines the control vector parameterization approach with a number of local
deterministic and global stochastic and hybrid (mixed-integer) non-linear programming solvers
and suitable dynamic process simulation methods so as to cover the solution of a wide class of
problems. The performance of DOTcvp is illustrated considering representative set of benchmark
problems, including the problem of drug displacement in a patient, the optimal operation of a
fed-batch bioreactor, and the optimal control of intracellular calcium oscillations.
The DOTcvp toolbox is freely available to academic users.
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1. INTRODUCTION

The open-loop optimal control problem (OCP), also called
dynamic optimization (DO), considers the computation
of the best operating policies for processes or systems so
as to maximize a pre-defined performance index (usually
involving quality, productivity and/or cost criterions).

The solution of this type of problems has received a great
deal of attention during the last two decades. This has
particularly been the case for the DO of biochemical and
biological systems. An overview of optimization in the
context of computational systems biology was given by
Mendes and Kell (1998) and more recently by Banga
(2008), the latter highlighting the need of robust and
efficient dynamic optimization methods.

These problems can be very challenging due to the highly
non-linear nature of the systems dynamics, plus the usual
presence of path constraints. In this sense, a review of
the recent literature reveals a significant number of works,
including advanced local optimization methods (for exam-
ple, Balsa-Canto et al. (2000); Wächter and Biegler (2006))
which are able to handle large scale constrained dynamic
optimization problems, and the use of global optimization
methods, either deterministic (e.g., Esposito and Floudas
(2000)), or stochastic and hybrid methods (e.g., Banga

et al. (2005); Balsa-Canto et al. (2005)), in order to handle
the non-convexity of many of these problems.

In addition, in recent years, there has also been a growing
interest in problems that incorporate discrete –binary or
integer– decisions to represent the inclusion or exclusion
of elements in a design, discontinuities in a process model,
or temporal sequencing decisions. This gives rise to the
mixed-integer dynamic optimization (MIDO) problems.

The numerical solution of such problems often relies on
the combination of the control vector parameterization
approach, based on a piecewise approximation of the
control functions, with a suitable mixed-integer non-linear
programming solver (MINLP) and an initial value problem
solver to deal with the system dynamics.

Recently, Bansal et al. (2003) and Chachuat et al.
(2006) have reviewed numerical methods to solve these
MIDO/MINLPs. They argue that since most of the MIDO
problems of interest are non-convex, there is a distinct
need global optimization methods to guarantee proper
(globally optimal) solutions.

Many of the proposed numerical methods to solve (MI)DO
problems have been successful in dealing with small bench-
mark problems, or even with several more realistic cases.
However, the absence, in most of the cases, of easy-to-
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use and friendly software tools, suitable for non-expert
users, has precluded the widespread application of these
methodologies. In this context, and although there are
a relatively large number of software packages for dy-
namic optimization, very few packages can handle MIDO
problems: to the best of our knowledge, only gPROMS
(Barton and Pantelides (1993); Bansal et al. (2003)) and
ABACUSS-II (Clabaugh et al. (1999)).

This work presents a MATLAB toolbox, DOTcvp (Dy-
namic Optimization Toolbox with Control Vector Param-
eterization approach) which, based on the CVP approach,
is able to handle general (MI)DO problems. DOTcvp offers
a number of advantages:

• It is able to handle non-convex problems through
a number of stochastic and hybrid NLP and MINLP
global solvers.

• It incorporates a number of state of the art local NLP
and MINLP solvers and computes exact gradients so
as to enhance their convergence properties.

• It has been fully implemented in MATLAB, with ease
of use in mind, and with a user friendly graphical
interface. Moreover, and with the aim of maximizing
the computational efficiency, most of the computa-
tions can be automatically performed via compiled
Fortran code if needed.

• It can import SBML models, a de facto standard in
systems biology.

This contribution is organized as follows, Section 2 formu-
lates the general class of MIDO problems considered and
presents the basics about the numerical methods used; Sec-
tion 3 describes DOTcvp toolbox in detail and Section 4
presents the application of the toolbox to a representative
set of DO and MIDO problems from the domain of systems
biology.

2. THEORY AND BACKGROUND

2.1 Mixed-Integer Optimal Control Problem

The mixed-integer optimal control problem, also called
mixed-integer dynamic optimization (MIDO) problem,
considers the computation of time dependent operating
conditions (controls), discrete –binary or integer– decisions
and time-independent parameters so as to minimize (or
maximize) a performance index (production cost, process
productivity, etc) while keeping a set of constraints coming
from safety and/or quality demands and environmental
regulations. This may be mathematically formulated as
follows:

Find u(t), i(t), p and tf so as to minimize (or maximize):

J = Gtf (x,u, i,p, tf ) +

∫ tf

t0

F (x(t),u(t), i(t),p, t)dt (1)

subject to:

f(ẋ(t),x(t),u(t), i(t),p, t) = 0, x(t0) = x0 (2)

g(x(t),u(t), i(t),p, t) ≤ 0, l = 1,me +mi (3)

uL ≤ u(t) ≤ uU , (4)

iL ≤ i(t) ≤ iU , (5)

pL ≤ i(t) ≤ pU , (6)

where x(t) ∈ X ⊆ Rnx is the vector of state variables,
u(t) ∈ U ⊆ Rnu is the vector of real valued control
variables, i(t) ∈ I ∈ Zni is the vector of integer control
variables, p ∈ P ⊆ Rnp is the vector of time-independent
parameters, tf is the final time of the process, me, mi rep-
resent the number of equality and inequality constraints,
respectively and g collects all state constraints, pathway,
pointwise and final time constraints and uL, iL, pL, uU ,
iU , pU correspond to the lower and upper bounds for the
control variables and the time-independent parameters.

2.2 Control Vector Parameterization

The CVP method proceeds dividing the control variables
(u(t) and i(t)) into a number of elements and then approx-
imating each element by means of different basic functions,
usually constant polynomials, in such a way that the
control variables are parameterized using wu ∈ Rρ and
wi ∈ Zρ which become decision variables.

This parameterization transforms the original problem
into a finite dimension (mixed-integer) non-linear pro-
gramming problem that may be solved by a suitable
MINLP solver. Note that the evaluation of the objective
function and constraints requires the solution of the system
dynamics by an initial value problem (IVP) solver.

If the outer (MI)NLP problem is convex, deterministic
(gradient-based) local methods seem to be the best al-
ternatives to efficiently solve it. In this regard, (mixed-
integer) sequential quadratic programming methods, such
as MISQP (Exler and Schittkowski (2007)), are considered
the state-of-the-art.

Nevertheless, in presence of non-convexities, local methods
may present convergence to local minima, calling for the
use of global optimization methods. In this concern, several
possibilities exist that may be classified in two major
groups: deterministic and stochastic. Deterministic global
methods ensure global optimality, at least for particu-
lar classes of problems, although in many situations the
computational cost is excessive. They have been recently
applied for the solution of MIDO problems (Chachuat
et al. (2006)).

Regarding stochastic global methods, several authors (see
the review in Banga et al. (2005)), have illustrated their
great potential in the context of DO and, more recently
(Exler et al. (2008)), also for MIDO. This type of methods
may locate the vicinity of global solutions with relative
efficiency, but the cost to pay is that global optimality
can not be guaranteed. Alternatives such as global-local
hybrid methods have been suggested for DO Balsa-Canto
et al. (2005) and MIDO Schlüter et al. (2009) as ways of
significantly enhancing the efficiency of the optimization
convergence.

Many of these optimization methods require the compu-
tation of gradients of the objective and/or constraints
with respect to the decision variables. Vassiliadis (1993)
proposed the use of first order parametric sensitivities to
compute such information in the context of CVP. The sen-
sitivity equations result from a chain rule differentiation
applied to the system defined in Eqns. 2 with respect to
the decision variables and may be solved in combination
with the original system. In this concern, the use of BDF
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(Backward Differentiation Formula) methods may be quite
attractive since they are able to exploit the fact that the
original system and the sensitivities share the Jacobian.

3. DOTCVP DESCRIPTION

DOTcvp is a MATLAB (www.mathworks.com) toolbox
particularly oriented to the solution of (mixed-integer)
dynamic optimization problems related to non-linear pro-
cesses, with the presence of non-linear constraints on con-
trol and state variables. DOTcvp is based on the CVP
approach, therefore the solution of the original dynamic
optimization problem is approximated by solving a main
MINLP problem with an inner IVP embedded.

3.1 Key Features

• Handles a wide class of (mixed-integer) dynamic op-
timization problems, including constrained, uncon-
strained, fixed, and free terminal time problems de-
scribed by ordinary differential equations (ODEs).

• The inner initial value problem (IVP) is solved using
the state-of-the-art methods available in SUNDIALS
(Hindmarsh et al. (2005)), which have been specially
designed to deal with non-stiff, stiff, and large scale
systems.

• Symbolically calculates exact gradients through the
derivation of first order parametric sensitivities that
are simultaneously solved with the system dynamics.

• The outer MINLP problem can be solved using
a number of advanced solvers, including local de-
terministic methods, stochastic global optimization
methods, and hybrid metaheuristics.

• In addition to the traditional single optimization
approach, the toolbox also offers more sophisticated
strategies, like multistart, sucessive re-optimization
(Balsa-Canto et al. (2000)), and sequential hybrid
strategies (Balsa-Canto et al. (2005)).

• Ease of use: it can be used from the command line,
by defining a simple structure of input data, or via
a graphical user interface (GUI), which makes the
definition and edition of a problem easier for novel
users.

• It offers many output options for the format of the
results, including detailed figures.

3.2 Numerical Methods

Regarding the solution of the (MI)NLP problems, DOTcvp
incorporates several possibilities:

• local deterministic
(1) IPOPT (Wächter and Biegler (2006)), Interior

Point OPTimizer, implements a primal-dual in-
terior point method, and uses line searches based
on Filter methods;

(2) FMINCON (Coleman et al. (1998)), Find MIN-
imum of CONstrained non-linear multivariable
function, belongs to the MATLAB optimization
toolbox and uses sequential quadratic program-
ming (SQP);

(3) MISQP (Exler and Schittkowski (2007)), Mixed-
Integer Sequential Quadratic Programming, solves
mixed-integer non-linear programming problems
by a modified SQP method;

• stochastic global
(1) DE (Storn and Price (1997), Differential Evolu-

tion) uses population based approach for mini-
mizing the performance index;

(2) SRES (Runarsson and Yao (2000), Stochastic
Ranking Evolution Strategy) uses an evolution
strategy combined with an approach to balance
objective and penalty functions;

• and hybrid metaheuristics
(1) ACOmi (Schlüter et al. (2009), Ant Colony Op-

timization for mixed-integer non-linear program-
ming problems) is inspired by ants foraging be-
havior, using MISQP for the local searches;

(2) MITS (Exler et al. (2008), Mixed-Integer Tabu
Search algorithm) is based on extensions of the
metaheuristic Tabu Search, useing MISQP for
local searches.

where the deterministic MISQP local solver and all hybrid
solvers are able to handle mixed-integer problems directly.

In addition several optimization modules have been imple-
mented for the sake of flexibility in problem solution:

• Single optimization: It consists on solving the master
MINLP problem in a single pass (i.e. a single opti-
mization run).

• Multistart: The user may select to perform a multi-
start of local methods from different initial guesses.
This technique allows to identify possible non-convexities.

• Sequential hybrid optimization: Sequential hybrid
methods are characterized by the combination of
a stochastic global method plus a deterministic local
method, which are run in two phases. First phase,
uses a global method to locate the vicinity of the
global solution and second phase is devoted to the
refinement of the solution by using a local method
(Balsa-Canto et al. (2005)). The toolbox offers the
possibility of combining the available methods into
a sequential hybrid approach.

• Sucessive re-optimization: To speed up the conver-
gence for problems where a high control discretization
level is desired. This procedure runs several successive
single optimizations automatically increasing the con-
trol discretization after each run (Balsa-Canto et al.
(2000)).

Regarding the solution of the embedded IVP, a modi-
fied SUNDIALS tool (Hindmarsh et al. (2005)) is used.
Forward integration of the ODE system is ensured by
CVODES, part of SUNDIALS, which is also able to per-
form the simultaneous or staggered sensitivity analysis.
The IVP problem can be solved with the Newton or
Functional iteration module and with the Adams or BDF
linear multistep method. The Adams method is recom-
mended for solving of the non-stiff problems while BDF
is recommended for solving of the stiff problems. The
sensitivity equations are provided analytically and the
error control strategy for the sensitivity variables could be
enabled. Detailed information about the settings, methods
and procedures of the toolbox can be found in the technical
report Hirmajer et al. (2008).
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4. ILLUSTRATIVE EXAMPLES

In order to test the different possibilities available in
the toolbox we have considered a number of illustrative
examples ranging from convex DO to non-convex MIDO
problems. This section presents the solution of a collection
of representative case studies with different characteristics
as summarized in Table 1.

Table 1. Main characteristics of the illustrative
examples.

Brief description nx nu ni me mi

P1 minimum time, end-point 2 1 0 2 0
constrained, DO problem

P2 fixed transition times, 7 2 0 0 0
DO problem

P3 pathway constrained, free 4 0 2 1 4
transition times, MIDO
problem

P1: Drug Displacement Problem

The problem consists of finding the optimal rate injection
of phenylbutazone infusion to minimize the time needed
to reach in a patient’s bloodstream a desired level of two
drugs (Balsa-Canto et al. (2005)). The system dynamics is
described by 2 non-linear differential equations where the
state variables represent the concentration of warfarin and
phenylbutazone drugs that may achieve a desired value
at final time (two end-point constraints). Table 2 shows
a typical simple input structure to solve this problem with
DOTcvp.

The problem was solved for a control discretization level
ρ = 5 with IPOPT. The optimal solution found corre-
sponds to a minimum time of 221.24 that is in good agree-
ment with the best published result of 221.43 (Banga et al.
(2005)). The optimal control profile and the corresponding
state trajectories are shown in the Fig. 1.
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Fig. 1. Optimal state trajectories (top) and the control
profile (bottom) for the drug displacement problem.

P2: Lee-Ramirez Bioreactor

This problem considers the optimal control of a fed-batch
bioreactor for induced foreign protein production by re-
combinant bacteria. This problem was first presented by
Lee and Ramirez (1994), slightly modified by Tholudur
and Ramirez (1997), and later solved using a second order
sensitivities approach (Balsa-Canto et al. (2001)). The
objective is to maximize the profitability of the process

using the nutrient (u1) and the inducer feeding rates (u2)
subject to 7 non-linear differential equations which rep-
resent reactor volume, the cell density, the nutrient con-
centration, the foreign protein concentration, the inducer
concentration, the inducer shock factor on cell growth rate,
and the inducer recovery factor on cell growth rate.

The problem was successfully solved using the successive
re-optimization strategy from DOTcvp and FMINCON as
NLP solver, setting the initial control discretization at
ρ = 15. The mesh increasing factor and the number of
mesh refinements were set at values of 2 and 4, respectively.
The results for the increasing ρ values are shown in
Fig. 2, which have the following performance index values:
5.64058, 5.72840, 5.75707, and 5.75710. These performance
indexes are in very good agreement with those published
in the literature.
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Fig. 2. Optimal trajectories for increasing discretization
(15, 30, 60, and 120) for the Lee-Ramirez bioreactor.

P3: Phase Resetting of a Calcium Oscillator Problem

We have considered a calcium oscillator model describing
intracellular calcium spiking in hepatocytes induced by an
extracellular increase in adenosine triphosphate concentra-
tion, as originally proposed by Kummer et al. (2000) and
later slightly modified and solved by Sager (2005); Lebiedz
et al. (2005). The aim of the optimization is to minimize
the intracellular oscillations behavior with the help of
two binary control variables (i1, i2) and one parameter
(p1). The system is described by 4 non-linear differential
equations which represent the activated G-protein, active
phospholipase C, intracellular calcium, and intra-ER cal-
cium. The control variables refer to the concentrations
of an uncompetitive inhibitor of the PMCA ion pump
and the inhibitor of PLC activation by the G-protein.
The best performance index reported in Sager (2005) was
1538.00 and authors reported that the system is extremely
sensitive to small perturbations in the stimulus.

We first solved this problem using the multistart module of
the DOTcvp toolbox, using MISQP as local solver and the
control discretization level was set to a value of ρ = 5. The
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Table 2. DOTcvp typical simple input screen for the drug displacement problem.

data.name = ’DrugDisplacement’; % name of the problem
data.odes.res(1) = {’((1+0.2*(y(1)+y(2)))ˆ2/(((1+0.2*(y(1)+y(2)))ˆ2+232+46.4*y(2))*((1+0.2*(y(1)+y(2)))ˆ2
+232+46.4*y(1))-2152.96*y(1)*y(2)))*(((1+0.2*(y(1)+y(2)))ˆ2+232+46.4*y(1))*(0.02-y(1))+46.4*y(1)*(u(1)-2*y(2)))’};
data.odes.res(2) = {’((1+0.2*(y(1)+y(2)))ˆ2/(((1+0.2*(y(1)+y(2)))ˆ2+232+46.4*y(2))*((1+0.2*(y(1)+y(2)))ˆ2
+232+46.4*y(1))-2152.96*y(1)*y(2)))*(((1+0.2*(y(1)+y(2)))ˆ2+232+46.4*y(2))*(u(1)-2*y(2))+46.4*(0.02-y(1)))’};
data.odes.res(3) = {’1’};
data.odes.ic = [0.02 0.0 0.0]; % vector of initial conditions
data.odes.tf = 500.0; % final time
data.odes.NonlinearSolver = ’Functional’; % [’Newton’|’Functional’]
data.odes.RelTol = 1*10ˆ(-8); % IVP relative tolerance level
data.odes.AbsTol = 1*10ˆ(-8); % IVP absolute tolerance level
data.sens.SensAbsTol = 1*10ˆ(-8); % absolute tolerance for sensitivity variables
data.nlp.RHO = 5; % CVP discretization level
data.nlp.J0 = ’y(3)’; % performance index, min-max(performance index)
data.nlp.u0 = 4.0; % initial guess for control values
data.nlp.lb = 0.0; % lower bounds for control values
data.nlp.ub = 8.0; % upper bounds for control values
data.nlp.solver = ’IPOPT’; % [’FMINCON’|’IPOPT’|’FSQP’|’SRES’|’DE’|’ACOMI’|’MISQP’|’MITS’]
data.nlp.FreeTime = ’on’; % [’on’|’off’] set ’on’ if free time is considered
data.nlp.eq.status = ’on’; % [’on’|’off’] switch on/off of the equality constraints (ECs)
data.nlp.eq.NEC = 2; % number of active ECs
data.nlp.eq.eq(1) = {’y(1)-0.02’}; % first equality constraint
data.nlp.eq.eq(2) = {’y(2)-2.0’}; % second equality constraint
data.nlp.eq.time(1) = data.nlp.RHO; % to indicate that it is an end-point constraint
data.nlp.eq.time(2) = data.nlp.RHO; % to indicate that it is an end-point constraint

multistart number of runs was set to 100, with randomly
generated initial values for all the decision variables in each
run. The set of solutions found were spread in a quite
wide range, a clear sign of multimodality. The histogram
of these solutions is shown in Fig. 3, where performance
index values worse than 2500.00 are not shown. The best
value obtained by the multistart was 1641.03, which is still
far from the published solution reported above.

1500 1600 1700 1800 1900 2000 2100 2200 2300 2400
0

1

2

3

4

Objective Function Value [−]

F
re

q
u

e
n

cy

Fig. 3. Histogram of the objective function value for the
calcium oscillator problem.

In a second step, we solved this problem using the MITS
hybrid strategy. The best solution found by MITS was
1542.50, which is very close to the value reported in Sager
(2005). The corresponding optimal trajectories are shown
in Fig. 4 and Fig. 5 where it can be seen how the optimal
control policies rapidly cancel the oscillations.

5. CONCLUSIONS

In this contribution we presented a MATLAB toolbox,
DOTcvp, which is based on the control vector parame-
terization approach, and is able to handle general mixed-
integer dynamic optimization (open loop optimal control)
problems. DOTcvp offers a number of advantages over
other existing tools:

• It incorporates a number of local and global NLP and
MINLP solvers so as to handle a wide range of MIDO
problems, including non-convex (multimodal) ones.

• It offers several optimization strategies, including (i)
multistart (to detect possible non-convexities); (ii)
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Fig. 4. Optimal state trajectories and desired states (dot-
ted lines) for the calcium oscillator problem.
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Fig. 5. Optimal control trajectories for the calcium oscil-
lator problem.
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sucessive reoptimization (to obtain smoother control
profiles); (iii) hybrid sequential methods (to enhance
efficiency during the solution of multimodal prob-
lems).

In order to illustrate the capabilities of the toolbox,
we presented the solution of a collection of problems
from the domain of systems biology with quite different
characteristics. The software, documentation, and further
examples can be obtained from the authors upon request.
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