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Abstract: In this work, we deal with distributed model predictive control (DMPC) of nonlinear
systems with communication disruptions between the distributed controllers. Specifically, we
focus on the design of DMPC systems that take into account communication channel noise and
data losses between the distributed controllers explicitly. In contrast to most of the existing
DMPC methods which assume flawless communication, we employ a specific channel model to
consider a number of realistic data transmission scenarios. In order to ensure the stability of the
closed-loop system under communication disruptions, each model predictive controller utilizes
a stability constraint which is based on a suitable Lyapunov-based controller. The theoretical
results are demonstrated through a nonlinear chemical process example.
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1. INTRODUCTION

With rapid growth in the area of networking and net-
worked control systems, augmentation of local control
systems with additional networked sensors and actuators
becomes a subject of increasing importance. These aug-
mentations which are known as networked control systems
(NCS), can significantly improve the efficiency, flexibility,
robustness and fault tolerance of an industrial control
system while reducing the installation, reconfiguration
and maintenance costs at the cost of coordination and
design/redesign of different control systems in the new
architecture (Christofides et al. (2007)). Model predictive
control (MPC) is a natural framework to deal with the
design and coordination of distributed control systems
because of its ability to handle input and state constraints.
MPC is based on incorporating a model to predict the fu-
ture evolution of the plant at each sampling time according
to the current state along a given prediction horizon. These
predictions are used to obtain an optimal input trajectory
which minimizes a given performance index. To reduce the
computational burden of the optimization problem, MPC
optimizes over the family of piecewise constant trajectories
with fixed sampling time and finite prediction horizon.
Once the optimization problem is solved, only the first
manipulated input value is implemented, discarding the
rest of the trajectory and repeating the optimization in
the next sampling step (Rawlings (2000)). In a centralized
MPC design, all the manipulated inputs of a given con-
trol system are coupled in a single optimization problem
to obtain the optimal input trajectory. In the case of
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large number of state variables and manipulated inputs
for a given control system, the computational complexity
of the centralized MPC may increase significantly and
consequently degrade closed-loop system performance, es-
pecially in the case of employing a nonlinear model in
MPC. A computationally-effective approach to overcome
the above mentioned drawbacks of centralized MPC is
to employ distributed MPC (DMPC) (e.g., Camponogara
et al. (2002)) in which the optimal trajectory is obtained
through solving a number of optimization problems with
lower dimensionality compared to the centralized design.

In our previous work (Liu et al. (2009), Liu et al. (2010)),
we proposed a DMPC architecture in which two dis-
tributed MPCs are designed via Lyapunov-based MPC
(LMPC) to coordinate their control actions using one-
directional communication. In this previous work, the
communication between the distributed controllers was
assumed to be flawless (perfect) which is reasonable in
the applications where point-to-point-communication links
are utilized. Recently, wireless networks have received sig-
nificant attention (Tabbara et al. (2007)) and play an
important role in multi-agent systems. In chemical process
systems (Christofides et al. (2007)), there is an increas-
ing trend toward developing industrial DMPC designs
where individual MPCs operate through a shared wire-
less/wired communication network. However, the design of
networked-based DMPC system has to deal with the dy-
namics introduced by the communication network, which
may include communication disruptions such as commu-
nication channel noise, data losses, bandwidth limitations,
time-varying delays, and data quantization (Muñoz de la
Peña and Christofides (2008)).
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Motivated by the lack of available methodologies to deal
with communication disruptions in DMPC architectures,
in the present work, we deal with DMPC of nonlinear
systems with communication disruptions between the dis-
tributed controllers. Specifically, we focus on the design
of DMPC architectures that take explicitly into account
communication channel noise and data losses between the
distributed controllers. We employ a communication chan-
nel model to consider communication disruptions and an
additional feasibility problem is formulated to determine
the reliability of the information transmitted through the
communication channel. Based on the feasibility of this
problem, the distributed controller receiving the informa-
tion decides whether to implement the received informa-
tion or discard it. The distributed controllers are designed
via LMPC based on a suitable Lyapunov-based controller.
The proposed DMPC has an explicit characterization of
the closed-loop stability region of the plant and guarantees
that the closed-loop system is ultimately bounded in an
invariant set which contains the origin. The theoretical
results are illustrated using a chemical process example.

2. PRELIMINARIES

2.1 Problem formulation

We consider a nonlinear system described by the following
state-space model

ẋ(t) = f(x(t)) +

2
∑

i=1

gi(x(t))ui(t) + k(x(t))w(t) (1)

where x(t) ∈ Rnx denotes the vector of state variables,
ui(t) ∈ Rnui (i = 1, 2) are two sets of control (ma-
nipulated) inputs and w(t) ∈ Rnw denotes the vector
of disturbance variables. The two inputs are restricted
to be in two nonempty convex sets Ui ⊆ Rnui where
Ui := {ui ∈ Rnui : |ui| ≤ umax

i } (i = 1, 2) and the
disturbance vector is bounded, i.e., w(t) ∈ W where
W := {w ∈ Rnw : |w| ≤ θw, θw > 0}. We assume that
the vector functions f(x), g1(x), g2(x) and k(x) are locally
Lipschitz and the origin is an equilibrium point of the nom-
inal system (system of Eq. 1 with w(t) = 0 for all t) with
u1 = 0 and u2 = 0 which implies that f(0) = 0. We further
assume that the system state measurements are available
and sampled at synchronous time instants tk = t0 + k∆
where t0 is the initial time and ∆ is the sampling time. In
this work, we use the operator |·| to denote Euclidean norm
of a vector, and a continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing
and satisfies α(0) = 0. We use Ωr to denote the set
Ωr := {x ∈ Rnx : V (x) ≤ r}, and the operator ‘/’ denotes
set subtraction, i.e., A/B := {x ∈ Rnx : x ∈ A, x /∈ B}.

2.2 Model of the communication channel

For a given input r ∈ Rnu2 to the communication channel,
the output r̃ ∈ Rnu2 is characterized as

r̃ = lr + n (2)

where l is a Bernoulli random variable with parameter
α and n ∈ Rnu2 is a vector whose elements are white
gaussian noise with zero mean and the same variance σ2.
The random variable l is used to model data losses in

the communication channel. The white noise, n, is used
to model channel noise, quantization error or any other
error to the transmitted signal, and it is independent of
the data losses in a probabilistic sense. If the receiver
determines that a successful transmission is made, then
l = 1, otherwise l = 0. Furthermore, in order to get
deterministic stability results, we assume that, when a
successful transmission is made, the noise, n, attached to
the input signal, r, is bounded by θ (that is |n| ≤ θ). Both
assumptions are meaningful from a practical standpoint;
please see the example in Section 5.

2.3 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
u1(t) = h(x(t)) which satisfies the input constraint on u1

for all x inside a certain stability region and renders the
origin of the nominal closed-loop system asymptotically
stable with u2(t) = 0. Using converse Lyapunov theorems,
this assumption implies that there exist class K functions
αi(·), i = 1, 2, 3, 4 and a continuous differentiable Lya-
punov function V for the nominal closed-loop system that
satisfy the following inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|)

∂V (x)

∂x
(f(x) + g1(x)h(x)) ≤ −α3(|x|)

|
∂V (x)

∂x
| ≤ α4(|x|), h(x) ∈ U1

(3)

for all x ∈ D ⊆ Rnx where D is an open neighborhood of
the origin. We denote the region Ωρ as the stability region
of the closed-loop system under the control inputs u1 =
h(x) and u2 = 0. By continuity, the local Lipschitz prop-
erty assumed for the vector functions f(x), g1(x), g2(x)
and k(x) and the fact that the manipulated inputs u1 and
u2 belong to the convex sets U1 and U2, it can be concluded
that there exists a positive constant M such that

|f(x(t)) +

2
∑

i=1

gi(x(t))ui(t) + k(x(t))w(t)| ≤ M (4)

for all x ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W . In addition,
by the continuous differentiable property of the Lyapunov
function V and the Lipschitz property assumed for the
vector functions f(x), g1(x), g2(x) and k(x), there exist
positive constants Lx, Lu1, Lu2, and Lw such that

|
∂V (x)

∂x
f(x) −

∂V (x′)

∂x
f(x′)| ≤ Lx|x − x′|

|
∂V (x)

∂x
gi(x) −

∂V (x′)

∂x
gi(x

′)| ≤ Lui|x − x′|, i = 1, 2

|
∂V (x)

∂x
k(x)| ≤ Lw

(5)

for all x, x′ ∈ Ωρ, u1 ∈ U1, u2, u
′
2 ∈ U2 and w ∈ W . These

constants will be employed in the proof of the stability of
the closed-loop system (Theorem 1 in Section 4).

Remark 1. Note that while there are currently no general
methods for constructing Lyapunov functions for general
nonlinear systems, for broad classes of nonlinear systems
arising in the context of chemical process control appli-
cations, quadratic Lyapunov functions are widely used
and provide very good estimates of closed-loop stability
regions; please see example in Section 5.
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Fig. 1. Distributed LMPC control architecture (F means
solving a feasibility problem).

3. DMPC WITH COMMUNICATION DISRUPTIONS

In our previous work (Liu et al. (2009)), a DMPC architec-
ture with flawless communication between controllers was
introduced. In practice, however, there is communication
disruption including channel noise and data loss between
distributed controllers. The objective of this work is to
propose a DMPC framework which deals with communi-
cation disruptions while maintaining closed-loop stability
and improving closed-loop performance. In the sequel, we
design two LMPCs, namely LMPC 1 and LMPC 2, to
calculate input trajectories of u1 and u2, respectively.
A schematic diagram of the proposed DMPC design for
systems subject to communication disruptions is depicted
in Fig. 1.

We propose to use the following implementation strategy:

1. Both LMPC 1 and LMPC 2 receive the sensor mea-
surements x(tk) at sampling time tk.

2. LMPC 2 evaluates the optimal input trajectory of
u2 based on the x(tk) and sends the first step input
value to its corresponding actuators and transmits the
entire optimal input trajectory through a communi-
cation channel to LMPC 1.

3. LMPC 1 solves a feasibility problem to accept or
reject the trajectory it received from LMPC 2.

4. LMPC 1 evaluates the future input trajectory of u1

based on the x(tk) and the result of the feasibility
problem.

5. LMPC 1 sends the first step input value of u1 to its
corresponding actuators.

Upon receiving the sensor measurement x(tk), LMPC 2
obtains its optimal input trajectory by solving the follow-
ing optimization problem:

min
ud2∈S(∆)

∫ N∆

0

[x̃T (τ)Qcx̃(τ) +
∑2

i=1 uT
di(τ)Rciudi(τ)]dτ (6a)

˙̃x(τ) = f(x̃(τ)) +
∑2

i=1 gi(x̃(τ))udi(τ) (6b)

ud1(τ) = h(x̃(j∆)), ∀ τ ∈ [j∆, (j + 1)∆) (6c)

x̃(0) = x(tk) (6d)

ud2(τ) ∈ U2 (6e)

∂V (x(tk))

∂x
g2(x(tk))ud2(0) ≤ 0 (6f)

where S(∆) is the family of piece-wise constant functions
with sampling period ∆, Qc, Rc1 and Rc2 are positive
definite weight matrices that define the cost, j = 0, ..., N−
1, x(tk) is the state measurement obtained at tk, x̃ is
the predicted trajectory of the nominal system for the
input trajectory computed by the LMPC 2, and N is the
prediction horizon.

Let u∗
d2(τ |tk) denote the optimal solution of the opti-

mization problem of Eq. 6. LMPC 2 sends the first step
value of u∗

d2(τ |tk) to its actuators and transmits the whole
optimal trajectory through the communication channel to
LMPC 1. LMPC 1 receives a corrupted version of u∗

d2(τ |tk)
which can be formulated as:

ũd2(τ |tk) = lu∗
d2(τ |tk) + n (7)

Note that a power level comparison can be employed to
specify whether data loss has occurred at the receiver side
(LMPC 1) of the communication channel.

Upon receiving ũd2(τ |tk) and assuming that data loss
has not happened, to make sure that LMPC 2 inherits
the stability from the Lyapunov-based controller h(x),
LMPC 1 first solves the following feasibility problem

find z ∈ S(∆)

ũd2(τ |tk) − θ ≤ z(τ) ≤ ũd2(τ |tk) + θ (8a)

z(τ) ∈ U2 (8b)

∂V (x(tk))

∂x
g2(x(tk))z(0) > 0 (8c)

According to the bounded noise value and the received
signal from the communication channel, LMPC 1 considers
all the possibilities of noise effect on the optimal trajectory
of LMPC 2 (i.e., constraint of Eq. 8a) and checks whether
in these cases LMPC 2 still satisfies the contractive con-
straint (8c). Note that when the optimization problem of
Eq. 8 is not feasible, it is guaranteed that the original
signal u∗

d2(τ |tk) after transmission through the channel
still satisfies the stability constraint of Eq. 6f. We also
note that there is no requirement that θ is sufficient small,
however, larger values of θ increase the range of z(τ) and
influence the feasibility of the problem of Eq. 8.

If the optimization problem of Eq. 8 is not feasible,
then the trajectory information received by LMPC 1 (i.e.,
ũd2(τ |tk)) is used in the evaluation of LMPC 1; and if the
optimization problem of Eq. 8 is feasible, then ũd2(τ |tk)
is discarded and a zero trajectory for u2 will be used in
the evaluation of LMPC 1. If we define the trajectory of
u2 that is used in the evaluation of LMPC 1 as ũ∗

d2(τ |tk),
then it is defined as follows:

ũ∗
d2(τ |tk) =











ũd2(τ |tk) if (8) is not feasible and there
is no data loss

0 if (8) is feasible or there exists
data loss

where 0 ∈ Rnu2 . Note that when data loss in the com-
munication channel occurs, a zero trajectory of u2 is also
used in the evaluation of LMPC 1. Note also that the
above strategy on the use of the corrupted communication
information is just one of many possible options to handle
communication disruptions in the DMPC architecture.

Employing ũ∗
d2, LMPC 1 obtains its optimal trajectory

according to the following optimization problem:

min
ud1∈S(∆)

∫

N∆

0

[x̃T (τ)Qcx̃(τ) + uT

d1(τ)Rc1ud1(τ)

+ ũ∗T

d2 (τ |tk)Rc2ũ∗

d2(τ |tk)]dτ (9a)

˙̃x(τ) = f(x̃(τ)) + g1(x̃(τ))ud1(τ) + g2(x̃(τ))ũ∗

d2(τ |tk) (9b)

ud1(τ) ∈ U1 (9c)

x̃(0) = x(tk) (9d)
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∂V (x(tk))

∂x
g1(x(tk))ud1(0) ≤

∂V (x(tk))

∂x
g1(x(tk))h(x(tk)) (9e)

Once both LMPCs solve their optimization problems, the
manipulated inputs of the proposed DMPC design are
defined as follows:

u1(t) = u∗
d1(t − tk|tk), ∀t ∈ [tk, tk+1)

u2(t) = u∗
d2(t − tk|tk), ∀t ∈ [tk, tk+1).

(10)

4. DMPC STABILITY

As it will be proved in Theorem 1 below, the proposed
DMPC framework takes advantage of the contractive
constraints of Eqs. 6f and 9e to compute the optimal
trajectories u1 and u2 such that the Lyapunov function
value V (x(tk)) is a decreasing sequence with a lower bound
and achieves the closed-loop stability of the system.

Theorem 1 Consider the system of Eq. 1 in closed-loop
under the DMPC design of Eqs. 9-10 based on a controller
u1 = h(x) that satisfies the conditions of Eq. 3. Let ǫw > 0,
∆ > 0 and ρ > ρs > 0 satisfy the following constraint:

−α3(α
−1
2 (ρs))+(Lx+

2
∑

i=1

Luiu
max
i )M∆+Lwθw ≤ −ǫw/∆.

(11)
If x(t0) ∈ Ωρ and if ρ∗ ≤ ρ where ρ∗ = max{V (x(t +
∆)) : V (x(t)) ≤ ρs}, then the state x(t) of the closed-loop
system is ultimately bounded in Ωρ∗ .

Proof: The proof consists of two parts. We first prove that
the optimization problems of Eqs. 6 and 9 are feasible for
all states x ∈ Ωρ. Subsequently, we prove that, under the
DMPC design of Eqs. 9-10, the state of the system of Eq. 1
is ultimately bounded in a region that contains the origin.

Part 1: First, we consider the feasibility of LMPC 2
and then focus on the feasibility of LMPC 1. All input
trajectories of u2(τ) such that u2(τ) = 0, ∀τ ∈ [0, ∆)
satisfy all the constraints (including the input constraint
of Eq. 6e and contractive constraint of Eq. 6f) of LMPC 2,
thus the feasibility of LMPC 2 is obtained. The feasibility
of LMPC 1 follows because all input trajectories u1(τ)
such that u1(τ) = h(x(tk)), ∀τ ∈ [0, ∆) are feasible
solutions to the optimization problem of LMPC 1 since
all such trajectories satisfy the input constraint of Eq. 9c;
this is guaranteed by the closed-loop stability property
of the Lyapunov-based controller h and the contractive
constraint of Eq. 9e.

Part 2: Let x(tk) ∈ Ωρ. Considering the inequalities of
Eq. 3, addition of inequalities of Eqs. 6f and 9e implies
that

∂V (x(tk))

∂x
(f(x(tk)) +

2
∑

i=1

gi(x(tk))u∗
di(0|tk))

≤
∂V (x(tk))

∂x
(f(x(tk)) + g1(x(tk))h(x(tk)))

≤ −α3(|x(tk)|).

(12)

The time derivative of the Lyapunov function along the
actual state trajectory x(t) of system of Eq. 1 in t ∈
[tk, tk+1) is given by:

V̇ (x(t)) =
∂V (x)

∂x
(f(x(t)) +

2
∑

i=1

gi(x(t))u∗
di(0|tk)

+k(x(t))w(t)).

Adding and subtracting
∂V (x(tk))

∂x
(f(x(tk)) + g1(x(tk))

u∗
d1(0|tk) + g2(x(tk))u∗

d2(0|tk)) and taking Eq. 12 into

account, we obtain the following inequality:

V̇ (x(t)) ≤ −α3(|x(tk)|) +
∂V (x)

∂x
(f(x(t))

+

2
∑

i=1

gi(x(t))u∗
di(0|tk) + k(x(t))w(t))

−
∂V (x(tk))

∂x
(f(x(tk)) +

2
∑

i=1

gi(x(tk))u∗
di(0|tk)).

From Eq. 3 and the above inequality, the following inequal-
ity is obtained for all x(tk) ∈ Ωρ/Ωρs

:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs)) + Lw|w(t)|

+(Lx +

2
∑

i=1

Luiu
∗
di(0|tk))|x(t) − x(tk)|.

Taking into account Eq. 4 and the continuity of x(t),
the following bound can be written for all t ∈ [tk, tk+1),
|x(t)− x(tk)| ≤ M∆. Using this expression, we obtain the
following bound on the time derivative of the Lyapunov
function for t ∈ [tk, tk+1), for all initial states x(tk) ∈
Ωρ/Ωρs

:

V̇ (x(t)) ≤ −α3(α
−1
2 (ρs))+(Lx+

2
∑

i=1

Luiu
max
i )M∆+Lwθw.

If the condition of Eq. 11 is satisfied, then there exists
ǫw > 0 such that the following inequality holds for x(tk) ∈
Ωρ/Ωρs

:

V̇ (x(t)) ≤ −ǫw/∆, ∀t = [tk, tk+1).

Integrating this bound on t ∈ [tk, tk+1), we obtain that:

V (x(tk+1)) ≤ V (x(tk)) − ǫw

V (x(t)) ≤ V (x(tk)), ∀t ∈ [tk, tk+1)
(13)

for all x(tk) ∈ Ωρ/Ωρs
. Using Eq. 13 recursively, it is

proved that, if x(t0) ∈ Ωρ/Ωρs
, the state converges to Ωρs

in a finite number of sampling times without leaving the
stability region. Once the state converges to Ωρs

⊆ Ωρ∗ ,
it remains inside Ωρ∗ for all times. This statement holds
because of the definition of ρ∗. This proves that the
closed-loop system under the distributed LMPC design is
ultimately bounded in Ωρ∗ .

Remark 2. The condition of Eq. 11 guarantees that if the
state of the closed-loop system at a sampling time tk is
outside the level set V (x(tk)) = ρs but inside the level set
V (x(tk)) = ρ, the derivative of the Lyapunov function of
the state of the closed-loop system is negative under the
proposed design.

Remark 3. For nonlinear systems under continuous con-
trol implementation, a sufficient condition for invariance is
that the Lyapunov function is decreasing on the boundary
of a set. For systems with continuous-time dynamics and
sample-and-hold control implementation, this condition is
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Fig. 2. Two CSTRs and a flash tank with recycle stream.

not sufficient because the derivative may become positive
during the sampling period and the system may leave the
set before a new sample is obtained. Based on Theorem 1,
ρ∗ is the maximum value that the Lyapunov function can
achieve in a time period of length ∆ when x(tk) ∈ Ωρs

. Ωρ∗

defines an invariant set for the state x(t) under sample-
and-hold implementation of the control action.

Remark 4. Note that the feasibility of the optimization
problems of Eqs. 6 and 9 are guaranteed by the constraints
of Eqs. 6f and 9e. The use of the corrupted input trajectory
information of u2 (i.e., ũd2) does not affect the feasibility
of the optimization problems of Eqs. 6 and 9 as well as the
stability of the closed-loop system; however, it does affect
the closed-loop system performance. This is the reason for
the introduction of the feasibility problem of Eq. 8 which
is used to decide whether the corrupted information can
be used to improve the closed-loop performance.

5. APPLICATION TO A CHEMICAL PLANT

The process considered in this study is a three vessel,
reactor-separator system consisting of two continuously
stirred tank reactors (CSTRs) and a flash tank separator
as shown in Figure 2. A detailed process description, the
process model and the value of the process parameters can
be found in (Chilin et al. (in press)).

We assume that the state measurements which include
the temperatures and species concentrations in the three
vessels are available synchronously and continuously at
time instants {tk≥0} with tk = t0 + k∆, k = 0, 1, . . .
where t0 is the initial time and ∆ is the sampling time.
For the simulations carried out in this section, we pick
the initial time to be t0 = 0 and the sampling time to be
∆ = 0.01 hr = 36 sec.

The first set of manipulated inputs is the heat injected
to or removed from the three vessels, that is u1 = [Q1 −
Q1s Q2−Q2s Q3−Q3s]

T ; the second set of manipulated in-
puts is the deviated inlet flow rate to vessel 2, that is u2 =
∆F20 = F20−F20s. The open-loop system has one unstable
and two stable steady states. The control objective is to
regulate the system to the unstable steady-state xs corre-
sponding to the operating point defined by Q1s, Q2s, Q3s

and F20s. The steady-state values for u1 and u2 are zero.
Taking this control objective into account, the process
model belongs to the following class of nonlinear systems:
ẋ(t) = f(x(t))+ g1(x(t))u1(t)+ g2(x(t))u2(t)+w(t) where
xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12] = [T1 −
T1s CA1 − CA1s CB1 − CB1s CC1 − CC1s T2 − T2s CA2 −
CA2s CB2 −CB2s CC2 −CC2s T3 − T3s CA3 −CA3s CB3 −
CB3s CC3 −CC3s] is the state, uT

1 = [u11 u12 u13] = [Q1 −
Q1s Q2−Q2s Q3−Q3s] and u2 = ∆F20 = F20−F20s are the
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Fig. 3. Temperature trajectories of the process under the
proposed DMPC design.
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Fig. 4. Mass fraction trajectories of the process under the
proposed DMPC design.

manipulated inputs which are deviation variables and are
subject to the constraints |u1i| ≤ 104 KJ/hr (i = 1, 2, 3)
and |u2| ≤ 5 m3/hr, and w is a bounded noise.

We consider a quadratic Lyapunov function V (x) = xT Px
with P = diag([10 104 104 104 10 104 104 104 10 104 104

104]) and design the controller h(x) as three PI controllers
with proportional gains Kp1 = Kp2 = Kp3 = 8000 and
integral time constants τI1 = τI2 = τI3 = 10 based on
the measurements of T1, T2 and T3, respectively. The
values of the weights in P have been chosen in a way
such that the Lyapunov-based controller h(x) satisfies the
input constraints, stabilizes the closed-loop system and
provides good closed-loop performance. Note that, in the
absence of process and measurement noise, this design of
h(x) manipulating u1 = [Q1 Q2 Q3] can stabilize the
closed-loop system asymptotically without the help of u2.
Based on h(x) and V (x), we design LMPC 1 to determine
u1 and LMPC 2 to determine u2 following the forms
given in Eqs. 6 and 9, respectively. In the design of the
LMPC controllers, the weighting matrices are chosen to be
Qc = diag([10 104 104 104 9 104 104 104 10 104 104 104]),
R1 = diag([(5 5 5) · 10−4]) and R2 = 104. The pre-
diction horizon for the optimization problem is N = 5
with a time step of ∆ = 0.01 hr. The initial condition
which is utilized to carry out the simulations is x(0)T =
[362.14 3.1191 0.13 0.01 348.21 2.01 0.16 0.01 462.55 2.31
0.26 0.01]. We set the communication channel noise power
(σ2), the data loss probability α and the noise bound θ to
0.01, 0.1 and 0.25, respectively.
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The state trajectory of the process under the proposed
DMPC design from the initial state are shown in Figs. 3
and 4. These figures show that the proposed control design
drive the temperatures and the mass fractions in the
closed-loop system close to the desired steady-state and
achieves closed-loop stability.

To emphasize the importance of solving the feasibility
problem in LMPC 1 during obtaining its optimal input
trajectory, we have carried out a set of simulations to com-
pare the proposed design with our previous control scheme
(in Liu et al. (2009)) in which LMPC 1 incorporates the re-
ceived channel signal in its optimization problem without
any pre-processing. In other words, in this case LMPC 1
ignores the fact that whether communication channel noise
and data loss effects violate the feasibility constraints of
LMPC 2 optimization problem. We have carried out a
number of simulations to compare the proposed DMPC
design with our previous DMPC design with the same
parameters and initial condition from a performance index
point of view. Table 1 shows the total cost computed for
10 different closed-loop simulations under the proposed
DMPC design and our previous control scheme. To carry
out this comparison, we have computed the total cost of
each simulation with different operating conditions (differ-
ent initial states and process disturbances) based on the
index of the following form

J =

M
∑

i=0

x(ti)
T Qcx(ti)+u1(ti)

T Rc1u1(ti)+u2(ti)
T Rc2u2(ti)

where t0 is the initial time of the simulations and tM =
1 hr is the final time of the simulations. As we can
see in Table 1, the proposed distributed LMPC design
has a cost lower than the previous DMPC design in all
10 simulations. This illustrates that in this example, the
proposed distributed LMPC design improves our previous
design from a closed-loop performance point of view.

Finally, we have carried out a set of simulations to evaluate
the performance of the proposed DMPC design over the
one in (Liu et al. (2009)) from a closed-loop performance
index point of view under different communication channel
noise powers and data loss probabilities. Tables 2 and 3
show the total cost computed for 10 different data loss
probabilities and noise powers compared to our previous
DMPC design, respectively. As it can be seen from these
tables, the proposed DMPC design is superior from a
closed-loop performance point of view for different noise
power and data loss probability values.

Remark 5. Note that the DMPC design in Liu et al. (2009)
can still guarantee the closed-loop system stability in
the presence of communication disruptions; however, the
closed-loop performance may be degraded. In this work, we
propose a practical approach to deal with communication
disruptions to improve the closed-loop performance while
maintaining the stability properties of the closed-loop
system. In all simulations, the proposed DMPC design
accounting for disruptions yields reduced performance
costs compared to the previous DMPC design, even though
this benefit cannot be proved to hold in general.

Table 1. Total performance cost (∗107) along
the closed-loop system trajectories.

sim. Prop. Prev. sim. Prop. Prev.
1 5.486 5.488 6 2.549 2.559
2 2.497 2.519 7 1.691 1.697
3 1.771 1.785 8 6.688 6.695
4 1.203 1.215 9 6.632 6.633
5 3.163 3.181 10 2.498 2.515

Table 2. Total performance cost (∗107) along
the closed-loop system trajectories for different

data loss probabilities and σ2 = 0.01.

α Prop. Prev. α Prop. Prev.
0.05 6.803 6.900 0.30 6.808 6.901
0.10 6.779 6.908 0.35 6.818 6.906
0.15 6.821 6.897 0.40 6.779 6.901
0.20 6.821 6.905 0.45 6.793 6.893
0.25 6.801 6.899 0.50 6.744 6.895

Table 3. Total performance cost (∗107) along
the closed-loop system trajectories for different

channel noise power values and α = 0.1.

σ2 Prop. Prev. σ2 Prop. Prev.
0.005 6.787 6.907 0.030 6.802 6.899
0.010 6.762 6.894 0.035 6.809 6.894
0.015 6.820 6.895 0.040 6.769 6.939
0.020 6.744 6.898 0.045 6.835 6.909
0.025 6.841 6.893 0.050 6.756 6.892
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