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Abstract: Almost all the theoretical aspects of Model Predictive Control (MPC), such as
stability, recursive feasibility and even the optimality are now well established for both, the
nominal and the robust case. The stability and recursive feasibility are usually guaranteed by
means of additional terminal constraints, while the optimality is achieved considering closed-loop
predictions. However, these significant improvements are not always applicable to real processes.
An interesting case is the control of open-loop unstable reactor systems. There, the traditional
infinite horizon MPC (IHMPC), which constitutes the simplest strategy ensuring stability, needs
to include an additional terminal constraint to cancel the unstable modes, producing in this way
feasibility problems. The terminal constraint could be an equality or an inclusion constraint,
depending on the local controller assumed for predictions. In both cases, however, a prohibitive
length of the control horizon is necessary to produce a reasonable domain of attraction for real
applications. In this work, we propose an IHMPC formulation that has maximal domain of
attraction (i.e. the domain of attraction is determined by the system and the constraints, and
not by the controller) and is suitable for real applications in the sense that it accounts for the
case of output tracking, it is offset free if the output target is reachable, and minimizes the offset
if some of the constraints become active at steady-state.

Keywords: model predictive control, domain of attraction, unstable reactor.

1. INTRODUCTION

When a constrained open-loop unstable system, as an
unstable reactor system, is attempted to be controlled the
guarantee of recursive feasibility and constrained stability
is a highly desirable controller property. First, the maxi-
mal stabilizable sets associated to the system equilibrium
should be carefully determined since, opposite to what
happens with stable systems, input constraints could make
impossible the rejection of large disturbances, indepen-
dently of the controller. Then, a controller with guaranteed
stability that explicitly takes into account these limitations
should be designed. In this context, MPC appears to be
the most suitable option. In fact, the stability, feasibility
and even optimality of MPC is now well established in
the theoretical aspects (Mayne et al. (2000), Rawlings and
Mayne (2009)). Standard approaches use the dual-mode
prediction paradigm (Scokaert and Rawlings (1998)) in
conjunction with an infinite horizon. Within this paradigm
it is assumed that a fixed unconstrained feedback K (local
controller) proceeds for predictions beyond the control
horizon. stabilizing in this way the unstable modes. In this

context, a major obstacle is to establish a trade-off between
the desirable volume of the domain of attraction (the set
of states for which the controller can generate a feasible
input), the overall complexity (computational cost), and
the achievable performance for a given control horizon
(degree of optimality). Assuming that the control horizon
is chosen small for computational reasons, the domain
of attraction is dominated by the aggressiveness of the
fixed unconstrained feedback, since additional (terminal)
constraints are needed to assure the feasibility of the local
control law. For stable systems, the null local controller
K =0 (Rawlings and Muske (1993)), which represents the
poorest tuned local controller, produces the maximal do-
main of attraction. This is the case of the classical infinite
horizon MPC (IHMPC). However, for the general case of
unstable systems, a terminal constraint that cancels the
unstable modes is needed (as they cannot be steered to
the origin by the proposed local null controller), produc-
ing again a severe reduction of the resulting domain of
attraction. Nagrath et al. (2002) presented an interesting
example of a open-loop unstable jacketed chemical reactor
(CSTR) controlled by MPC. The objective is to keep the
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temperature of the reacting mixture constant at a desired
value, while the disturbances to the system include the feed
temperature and the jacket feed temperature and the only
manipulated variable is the jacket flow rate. For this kind
of system, it is usual to adopt a cascade control structure:
an inner-loop for the control of the jacket temperature
and an outer-loop for the control of the reactor tempera-
ture. The authors compared three different controllers: a
classical cascade controller, a finite horizon MPC and an
IHMPC. The output performance is clearly better for the
MPC strategies, while only the IHMPC assures stability.
As the authors declared, the problem with the IHMPC is
that to implement appropriately the cancellation of the
unstable modes (terminal constraint) a prohibitive large
control horizon is needed. Again, the problem of a reduced
domain of attraction for small control horizons arises.
More recently, González and Odloak (2009) reformulates
the original IHMPC to allow an augmented domain of
attraction for both, stable and unstable systems. The
main idea was to include an appropriate set of slack vari-
ables into the MPC optimization problem that, together
with some model formulation properties, allows a maxi-
mal closed-loop domain of attraction (i.e., the domain of
attraction is determined by the system and the constraints,
and not by the controller).
This paper proposes the study of the application of
IHMPC to an unstable reactor system in terms of the
domain of attraction and the output performance. Fur-
thermore, a generalization of the IHMPC proposed in
González and Odloak (2009) is presented, and some steady
state optimality properties, related to the capability of the
controller to account for unreachable output references, are
discussed.
Notation: vector (a, b) denotes

[
aT bT

]T
; for a given λ,

λX = {λx : x ∈ X}. For a symmetric positive definite

matrix P, ‖x‖P =
√
xTPx denotes the weighted Eu-

clidean norm. Matrix In ∈ Rn×n denotes the identity
matrix. 0n,m ∈ Rn×m denotes the null matrix. Con-
sider a ∈ Rna, b ∈ Rnb and a set Γ ⊂ Rna+nb,
then the projection operation is defined as Proja (Γ) ={
a ∈ Rna : ∃b ∈ Rnb, (a, b) ∈ Γ

}
. Given two sets S1, S2, the

set S1\S2 is defined as S1\S2 = {x : x ∈ S1 and x /∈ S2}.

2. REACTOR SYSTEM

Consider a continuous stirred-tank reactor (CSTR), in
which an exothermic adiabitic irreversible first-order re-
action (A → B) is described by the following non-linear
state equations (Nagrath et al. (2002), Russo and Bequette
(1996)):

ẋ1 = −[q + φK(x2)]x1 + qx1f (1)

ẋ2 = βφK(x2) x1 − (q + δ)x2 + δx3 + qx2f (2)

ẋ3 = δ1δδ2x2 − δ1(qc + δδ2)x3 + δ1qcx3f (3)

In these equations x1 is the dimensionless concentration of
reactant A, x2 is the dimensionless reactor temperature,
x3 is the dimensionless jacket temperature, x1f is the
dimensionless feed concentration of reactant A to the reac-
tor, x2f is the dimensionless feed temperature, x3f is the
dimensionless jacket feed temperature and qc is the jacket
flow rate. The state vector is defined as x := [x1 x2 x3]T ,
while x1f , x2f and x3f are the possible disturbances to the

reactor. In this case, x1f is considered constant, and then
the disturbance vector will be given by l := [x2f x3f ]T .
Clearly, the set of equations presented before is nonlinear.
Eq. (1) represents the dynamic material balance for the
reactant A, Eq. (2) represents the dynamic energy balance
inside the CSTR, and Eq. (3) represents the dynamic
energy balance around the cooling jacket. For the three
equations, the usual assumptions of constant volume, per-
fect mixing and constant physical parameters are made.
The traditional operation of a CSTR consists in an indirect
control of concentration by means of the control of the
reactor temperature (x2), using the cooling jacket flow
rate (qc) as manipulated variable. However, as Russo and
Bequette (1996) and Russo and Bequette (1998) remark,
a multiplicity behavior could be found for the three-state
CSTR model when qc is the manipulated variable. The
existence of the input multiplicities in the system can
severely degrade the performance of controlled output and
moreover, unfeasible operation regions can appear. For this
reason, the selection of an adequate operation point is a
key for the correct operation of the reactor.

Several authors studied and derived conditions for steady-
state multiplicities for a CSTR. The parameters chosen
in this work are those shown in Russo and Bequette
(1998), which exhibit open-loop unstable behavior for a
range of reactor temperatures bounded by the limit points:
φ = 0.072, β = 8.0, δ = 0.3, γ = 20, q = 1.0, δ1 = 10,
δ2 = 1.0, x1f = 1.0, x2f = 0.0 and x3f = −1.0.

3. MODELING THE SYSTEM AND CONSTRAINTS

The aim of this section is to discuss both, a linear pre-
diction model and the way the constraints affect it when
unstable systems are attempted to be described. As was
shown in Nagrath et al. (2002) block diagonal transition
matrices, which separate the unstable from the stable
modes of the systems, are desirable to represent unstable
systems for IHMPC. In this context, a suitable model is
as follows: xi (k + 1)

xun (k + 1)
xst (k + 1)

 =

 Ini 0 0
0 Fun 0
0 0 F st

 xi (k)
xun (k)
xst (k)


+

 Bi

Bun

Bst

∆u (k) (4)

y (k) =
[

Υi Υun Υst
]  xi (k)

xun (k)
xst (k)

 ,

where xi ∈ Xi ⊆ Rni, ni = max (nu, ny), represents the
integrating modes artificially induced by the incremental
form of the model, xst ∈ Xst ⊆ Rns represents the
stable modes, xun ∈ Xun ⊆ Rnun represents the original
unstable modes of the system, ∆u (k) = u (k)−u (k − 1) ∈
Rnu, y (k) ∈ Rny. This particular block diagonal form
of model (4) can be obtained from the step response of
the transfer function model (González and Odloak (2009),
Rodrigues and Odloak (2003)), or by an appropriate
similarity transformation of a given state space model.
The system has nun and ns unstable and stables poles,
respectively. In addition, ni is the number of integrating
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modes (introduced by the incremental form of the model)
that is equal to the maximum between the number of
system input and outputs. Matrix Υi is given by Υi =[
Ini0ni,(ni−ny)

]
if nu > ny, and by Υi = Ini if nu ≤ ny.

Matrices Υun and Υst account for the effect of the unstable
and stable states in the output.
On the other hand, the input feasible set U is defined as
follows:

U = {∆u : −∆umax ≤ ∆u ≤ ∆umax and

umin ≤ u (k − 1) ≤ umax} ,

where u (k − 1) is the past value of the input u. In addition,
it is assumed that the states x =

(
xi, xun, xst

)
are

constrained to belong to a set X, given by X = Xi×Xun×
Xst. Here, this set is defined by the operating window of
the process. Set Xi must satisfy the input constraints, as
follows: Biumin ≤ xi ≤ Biumax.

Remark 1. Notice that the present formulation takes a
special care of input increments. Firstly, the input incre-
ment is considered as input in the system (4), instead of
the input itself. This property gives an alternative way to
achieve an offset-free control, in comparison to the target
calculation strategy used in Nagrath et al. (2002), that
needs a separate optimization problem to be solved. Sec-
ondly, input increment constraints are included together
with the input constraints. This constitutes an important
feature of real processes usually disregarded by the typical
MPC formulations, and contributes to a better description
of the whole system, since this kind of constraints limits
the maximal domain of attraction of the system, as can be
seen in the next sub-section.

3.1 Characterization of the constrained steady states of the
system

Without loss of generality it is assumed here that nu =
ny = ni (for non-square systems the procedure to char-
acterize the steady state is similar). For a given output
target (or set-point) ysp, any steady state of the sys-
tem

(
xis, x

un
s , xsts ,∆us

)
associated with this target output

should satisfy the following condition
 Ini − Ini 0 0

0 Fun − Inun 0
0 0 F st − Ins

  Bi

Bun

Bst

[
Υi Υun Υst

]
0


 xis
xuns
xsts
∆us

 =

 0
0
0
ysp

 . (5)

From equation (5), and assuming that rank
(
Bi
)

= nu,
it follows that any steady state of the system are given
by
(
xis, x

un
s , xsts ,∆us

)
= (ysp, 0, 0, 0). This last condition

represents a useful property of the specific model formu-
lation (4), as it says that any possible steady state can
be condensed in a single state component

(
xis
)
, while the

other states are null 1 .
Now, since the system is subject to constraints, it should

1 Notice that the steady state is condensed in the state component
that was artificially included in model (4)

be steered to those steady states that satisfy the con-
straints. The set of these admissible steady states is defined
as 2

Xs =
{
xs =

(
xis, x

un
s , xsts

)
∈ X : xis ∈ Xi, xuns ∈ {0}

and xsts ∈ {0}
}

.

Notice that from the latter definition, it follows that the set
of feasible output steady states, ys = Cxs = xis, is directly
given by Xi (this means that any feasible integrating state
is a steady state of the system).

Remark 2. It is frequent in real applications that the
desired output set-point ysp is not reachable, that is, the
desired steady state xs = (ysp, 0, 0) is not in Xs. This
could be caused by a mismatch between the model used
to compute the optimal steady state and the model used
to compute the dynamic forecast. Despite in this case an
output offset will necessarily appear, this should not be a
cause of instability.

3.2 Characterization of the stabilizable sets for the
non-stable states

A remarkable characteristic of the constrained unstable
systems is that there exists a limited set of non-stable
states, called maximal stabilizable set, out of which the
system cannot be stabilized by any controller. It is useful
at this point to group the integrating and the pure unstable
modes into a single vector, xnst =

(
xi, xun

)
, of non-stable

states. In this way system (4) can be rewritten as[
xnst (k + 1)
xst (k + 1)

]
=

[
Fnst 0

0 F st

] [
xnst (k)
xst (k)

]
+

[
Bnst

Bst

]
∆u (k)

y (k) = [Υnst Υst]

[
xnst (k)
xst (k)

]
,

where Bnst =
[
Bi

T

Bun
T
]T

, Fnst = diag (Ini, F
un),

Υnst =
[
Υi Υun

]
. Now we exploit the steady state char-

acterization presented in the last section in order to define
some useful sets. First, let us consider the (equilibrium) set
of feasible non-stable steady states, Xnst

s = Projxnst (Xs).
Based on this definition, it is possible to define the set
of non-stable states that can be admissibly steered, by
means of an admissible sequence of j control actions, from
Xnst = Xi ×Xun to the equilibrium set Xnst

s :

Stnstj

(
Xnst, Xnst

s

)
=

{xnst (0) ∈ Xnst : for all k = 0, · · · ,j − 1,∃∆u (k) ∈ U
such that xnst (k) ∈ Xnst and xnst (j) ∈ Xnst

s }.
This set (called the stabilizable set for the non-stable
states) is a control invariant set for states xnst, for all
j ≥ 1 (see Lemma 1 in González and Odloak (2009)).

Remark 3. As can be seen in Remark 1 of González
and Odloak (2009), the set Stnstj (Xnst, Xnst

s ) tends to
a limited set as the number of steps j tends to ∞. So,
by increasing the index j up to N , in such a way that
StnstN+1 (Xnst, Xnst

s ) ≈ StnstN (Xnst, Xnst
s ), it is possible to

2 Notice that, as was already said, Xi is such that the input
constraints are fulfilled (i.e., Biumin ≤ xi ≤ Biumax)

Copyright held by the International Federation of Automatic Control 272



define the largest possible domain of attraction for the non-
stable states as Θnst = StnstN (Xnst, Xnst

s ).

Remark 4. If we now define Θ = {x ∈ X : xnst ∈ Θnst},
then this set is the maximal domain of attraction of any
controller (largest possible domain of attraction of the
system) since it does not depend on the selected control
law, but on the nature of the system and the states, as
well as on the input constraints.

Remark 5. The equilibrium set for the pure unstable
states is given by Xun

s = Projxun (Xs) = {0}. So, it
is possible to define the stabilizable set for the unstable
states as Stunj (Xun, {0}). Furthermore, the largest possible
domain of attraction for the unstable states is given by
Θun = Projxun (Θnst).

4. IHMPC FORMULATIONS

4.1 Classical IHMPC

As was established in Nagrath et al. (2002), the main
advantage of the infinite over the finite horizon is the elim-
ination of the requirement of tuning for nominal stability.
For unstable systems, however, the non-stable modes must
be canceled to achieve constrained stabilizability of the
predictions (a constraint is included that forces this cancel-
lation at the end of the control horizon m). For tracking a
non-zero target, the classical IHMPC formulation adapted
to model (4) is as follows:

Problem 1

min
∆uk

Vk =

m−1∑
j=0

{
‖ x (k + j|k)− xsp‖2Q

+ ‖ ∆u (k + j|k)‖2R
}

+
∥∥xst (k +m|k)

∥∥2

P

subject to:

∆u (k + j|k) ∈ U, j = 0, · · · ,m− 1

xi (k +m|k)− ysp = 0 (6)

xun (k +m|k) = 0 (7)

where xsp = (ysp, 0, 0), x (k|k) = x (k), ∆u (k + j|k) is the
control move computed at time k to be applied at time
k+j,m is the control horizon,Q and R are positive weight-
ing matrices of appropriate dimension, ysp is the output
reference, and ∆uk = (∆u (k|k) , · · · ,∆u (k +m− 1|k)).
Because of the terminal constraints (6) and (7), the cost
of the IHMPC can be written as a finite horizon cost with a
terminal penalty term (the terminal matrix P is computed

by solving the Lyapunov equation P = Q+ F st
T

PF st).
Two main problems arise when this formulation is in-
tended to be applied. The domain of attraction for
the non-stable modes is given by the m-stabilizable set
Stnstm (Xnst, {0}), because of constraints (6) and (7). This
set is very small, mainly if the practical case of input
increment constraints is considered, because it considers
as target set the origin (instead of the equilibrium set
Xnst
s ) and because it considers only m steps to reach this

target set. On the other hand, if an unreachable set-point is
used, the cost becomes unbounded and feasibility/stability
is lost.

4.2 IHMPC with large domain of attraction

A possible solution to these problems is the inclusion
of slack variables to relax the terminal constraints. In
González and Odloak (2009) a formulation was presented
that accounts for the problem of including slack variables
into the infinite horizon MPC optimization problem, with
the final objective of enlarging the resulting domain of
attraction. The main idea of this approach was to separate
the convergence (main objective of an IHMPC) in two
steps: the first one is devoted to steer the non-stable
state xnst to the set Stnstm (Xnst, Xnst

s ) in a finite number
of steps; while the second one is devoted to steer the
integrating and stable states to the desired equilibrium
point

((
xi, xst

)
→ (ysp, 0)

)
. The slack variables assure the

feasibility at any time and for any non-stable state in
the maximal domain of attraction Stnst∞ (Xnst, Xnst

s ). As
a result, the controller has the largest possible domain of
attraction, i.e. the domain of attraction is given by Θ,
which does not depend on the control law.

4.3 A novel IHMPC with large domain of attraction

The strategy presented in González and Odloak (2009) has
some limitations, since it does not deal with an arbitrary
number of unstable states. A possible generalization of this
strategy consists of using a generalized Minkowski func-
tional, associated to the stabilizable sets Stunj (Xun, {0}),
for m ≤ j ≤ N (where N is as in Remark 3), as the cost
function of a first optimization problem of a two-stage
MPC formulation. Before presenting the novel IHMPC
formulation, we introduce the following definitions:

Definition 1. Given a convex set S ⊂ X, the Minkowski
functional ΨS associated to S is defined as

ΨS(x) = inf{µ ≥ 0 : x ∈ µS}.

To see the properties of the function ΨS(x), see Blanchini
(1999).

Consider now a sequence of 0-symmetric convex sets S1 ⊂
S2 ⊂ . . . ⊂ Sn. Then, a corresponding sequence of pairwise
disjoint sets, Υi+1 = int(Si+1)\int(Si), i = 1, . . . , n −
1, which are a partition of Sn, could be defined. Now,
following the idea of the Minkowski functional presented
above, it is possible to associate a function to the whole
sequence, in such a way that the level surfaces of this new
functional are the contours of the sets Si:

Definition 2. Given a sequence of convex sets S1 ⊂ S2 ⊂
. . . ⊂ Sn, the generalized Minkowski functional Ψ{S1,...,Sn}
associated to Si is defined as

Ψ{S1,...,Sn}(x) =

{
ΨνiSi

(x) if x ∈ Υi+1, i = 1, . . . , n− 1
Ψν1S1

(x) if x ∈ S1

where the coefficients νi are such that νiSi ⊇ νi+1Si+1.

Remark 6. To obtain the coefficients νi the following op-
timization problem must be solved:

νi = min{ν ≥ 0 : νSi ⊇ νi+1Si+1},
for i = 1, . . . , n− 1, and νn = 1.

Once the coefficient are obtained, the sequence of sets νiSi
are such that νiSi ⊃ νi+1Si+1, for i = 1, . . . , n− 1.
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The generalized Minkowski functional applied to unsta-
ble stabilizable sets has the following properties, which
are useful for the MPC formulation: Ψ{Stun

m ,···,Stun
N
} (xun)

is greater than zero for all non-null values of xun,
Ψ{Stun

m ,···,Stun
N
} (xun) is null if and only if xun is null, and

the contour of the stabilizable sets {Stunm , · · ·StunN } are
level surfaces of the functional Ψ{Stun

m ,···,Stun
N
} (xun). Based

on the above definitions, the proposed IHMPC formula-
tion, which consists of the following optimization problems
that are solved sequentially:

Problem 2a

min
∆ua,k

Va,k = Ψ{Stun
m ,···,Stun

N
} (xun (k +m|k))

subject to:

∆ua (k + j|k) ∈ U, j = 0, · · · ,m− 1

Problem 2b

min
∆ub,k,δik,δ

un
k

Vb,k =

m−1∑
j=0

{
‖ x (k + j|k)− xsp + δ (k, j)‖2Q

+ ‖ ∆ub (k + j|k)‖2R
}

+
∥∥xst (k +m|k)

∥∥2

P
+
∥∥δik∥∥2

S

subject to:

∆ub (k + j|k) ∈ U, j = 0, · · · ,m− 1

xi (k +m|k)− ysp + δik = 0 (8)

xun (k +m|k) + Fun
m

δunk = 0 (9)

Ψ{Stun
m ,···,Stun

N
} (xun (k +m|k)) ≤ Ψ∗ (10)

where S is a positive weighting matrices of appropriate

dimension, δ (k, j) =
(
δik, F

unj

δunk , 0
)

are slack variables,

and Ψ∗ is the optimal cost of Problem 2a. Because of
the slacked terminal constraints (8) and (9), the cost of
this IHMPC can be written as a finite horizon cost with a
terminal penalty term, as it is done in a classical IHMPC.
Constraint (10) forces the unstable states to remain in the
stabilizable set determined by Problem 2a.
The following algorithm produces a stabilizing control law
with a domain of attraction given by Θ:

Algorithm 1. Solve Problem 2a and pass the optimal value
of the cost to Problem 2b. Implement the first control
action ∆ub (k|k).

Also, the control sequence obtained from the execution
of Algorithm 1 at successive time steps drives the output
of the closed loop system asymptotically to a point that

minimizes
∥∥δik∥∥2

S
(particularly, if the output set-point

is reachable, the output of the closed loop system is
asymptotically steered to it without offset).

Remark 7. The terminal constraint for the unstable and
integrating states in Problem 2b can be written as[

Ci

Cun

]
∆ub,k =

[
ysp − xi (k)− δik

−Fun
m

(xun (k)− δunk )

]
,

where Ci =
[
Bi Bi · · · Bi

]
, Cun =[

Fun
m−1

Bun Fun
m−2

Bun · · · Bun
]
. So, with this

two-stage formulation, the control horizon m should be

large enough to assure that matrix
[
Ci

T

Cun
T
]T

is full

rank.

5. APPLICATION TO THE UNSTABLE REACTOR

The aim of the simulation results is to compare the per-
formance and feasibility of the proposed formulation with
the classical IHMPC, when the unstable reactor of section
2 is considered. The objective is to control one output
variable (reactor temperature) manipulating one input
variable (jacket flow rate). Using Taylor series expansion
and a convenient transformation, the following diagonal-
ized discrete time linear model is obtained (T=0.05):

A =

 1 0 0 0
0 1.339 0 0
0 0 0.9531 0
0 0 0 0.6167

 , B =

 2.2361
−0.2813
−0.1931
1.2699


and

C = [−0.1977 −0.9627 −0.7735 0.0226 ]

The input constraints are given by: umax = 1.32, umin = 0,
∆umax = 0.1. The input increment bounds are chosen
small to clearly show its effect on the controllers domain of
attraction. The tuning parameters of the proposed IHMPC
are: Q = 50, R = 0.1 and Si = 5 104. The coefficients νi
of the generalized Minkowski functional used for Problem
2a are given by: ν5 = 1.8, ν6 = 1.5, ν7 = 1.4, ν8 = 1.3,
ν9 = 1.15 and ν10 = 1. The tuning parameters of the
classical IHMPC are: Q = 50,R = 0.1.

First, we analyze the domain of attraction for the non-
stable modes of both controllers. As was already said,
the domain of attraction of the IHMPC depends on the
control horizon, and it is given by Stnstm (Xnst, {0}). Figure
1 shows these sets for m = 10, m = 20, m = 24,
m = 28 and m = 30 (dashed-line). On the other hand,
the domain of attraction of the proposed controller is
the maximal domain of attraction of the system (and
so, it does not depend on the control horizon), and it
is given by Stnst15 (Xnst, Xnst

s ) (solid-line). Notice that for
m > 28 the domain of attraction of the IHMPC remains
almost the same as the one obtained with m = 28 and
furthermore, this maximal set is smaller than the maximal
domain of attraction of the system. This shows that if
input increment constraints are considered, the domain of
attraction of the classical IHMPC could not be the largest
possible, even for very large control horizons.

Now, the output performance of both controllers are
compared. First, a state disturbance is simulated, such
that the original non-stable states is in Stnst7 (Xnst, Xnst

s ).

The disturbance is given by: x(0) = [0 0.12 0.2 − 0.2]
T

,
which correspond to the following disturbance in the orig-
inal state variables: concentration of reactant = 0.12,
reactor temperature = −0.23 and jacket temperature =
−0.25 (written as deviation variables). The proposed con-
troller steers first the system to Stnstm (Xnst, Xnst

s ), with
m = 5, in two steps, and then regulates the system to the
desired equilibrium point. Figure 2 shows the evolution of
the non-stable states (solid-line and circles). On the other
hand, the classical IHMPC needs a control horizon equal
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Fig. 1. Domain of attraction for both, the proposed con-
troller and the classical IHMPC.

Fig. 2. Non-stable state evolution

to 30 to account for this disturbance. Figure 2 shows the
non-stable state evolution for the IHMPC and m = 15
(dashed-line and circles), where it can be seen that the
constraints are violated on the right hand side of the figure.

In a second stage, a set-point change of 0.1 is simulated. A
control horizon ofm = 5 was selected for the proposed con-
troller, while a control horizon of m = 9 and m = 12 was
selected for the IHMPC in order to make it feasible. Figure
3 shows the time responses, where it can be seen that
the proposed controller has a slightly better performance.
Finally, a set-point change of 0.35 is simulated, which is
an unreachable target (it corresponds to an unreachable
equilibrium state xsp = [−1.77 0 0 0]T ). In this case, the
IHMPC cannot be used, while the proposed controller,
because of the effect of the slack variables, steers the
system to a feasible point that minimizes the distance
from the desired set-point. Figure 2 shows the non-stable
state evolution (dotted-line and circles), together with the
unreachable equilibrium state (circle-star).

6. CONCLUSION

A study was developed of the capability of IHMPC to
account for unstable reactor systems. Performance and
feasibility (together with stability) was studied, and a

Fig. 3. Input, input increment and output responses for a
set-point change.

new IHMPC formulation was presented that exploits the
properties of a particular model structure and exhibits
the largest possible domain of attraction. As other recent
formulations, it guarantees recursive feasibility and stabil-
ity for tracking both, reachable and unreachable output
set-points. Furthermore, in the latter case, the resulting
controller steers the system to an admissible stationary
output that minimizes the distance to the desired set-
point, without the necessity of a target calculation stage.
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