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Abstract: The computational demands of Model predictive control (MPC) are well known, and
due to its internal constrained optimiser, historically has been ill-suited for embedded controllers
designed to tackle high-speed applications. This paper explores the options of developing a low-
cost lightweight MPC controller destined for micro-controller or FPGA architectures for modest
applications demanding reasonable controller horizons. An object based MPC development tool
is introduced and applied to an experimental 4-tank level system to explore the performance of
the algorithm.
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1. INTRODUCTION

Model Predictive Control, or MPC, in recent years has
clearly garnered the interest of both academia and indus-
try clearly becoming the advanced process control tech-
nique of choice as noted in audits Qin and Badgwell (2003),
and industrial overviews Wilson and Young (2006). The
reasons for its popularity are well known, namely the
elegant constraint handling, Garcia et al. (1989), intuitive
tuning, and the ability to optimally handle non-square
systems.

However current commercial MPC control offerings are
hampered by the inherent computationally demanding na-
ture of an optimal controller. Consequently to date MPC
applications have been mainly in the chemical processing
industries in part due to three reasons. First the industrial
plant time constants are relatively slow, in the orders
of minutes to hours, second operational constraints on
a chemical plant are critical and therefore should be an
integral part of the control design, and finally the complex-
ity of the MPC design means that it is more economical
to implement it once in a multivariable fashion for a
plant-wide or unit-wide application. These reasons may
also explain the paucity of MPC applications outside the
process control community as also pointed out recently in
Dua et al. (2008).

1.1 Suitable applications for embedded MPC

Notwithstanding the computational complexity of MPC,
we believe that there is no reason why an MPC could not
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work adequately on embedded hardware such as micro-
controllers or field programmable gate arrays (FPGAs) at
high speed. If this is achievable, as recent activity reported
in Wang and Boyd (2008) and Lau et al. (2009) seems
to suggest, then MPC could be applied to much faster
systems such as unmanned vehicles, auto-pilots, intelligent
sensors where the same control benefits could open up new
opportunities in robotics and intelligent systems.

Our aim is explore the possibility of executing MPC on
simple low cost hardware such as micro-controllers or
FPGAs at kilo-hertz sampling frequencies. Our imme-
diate interest is in applications involving the control of
autonomous flying and underwater vehicles which tend
to be characterised by small compact, mildly nonlinear
models of between 3 and 10 states typically subject to
simple bounded constraints. We term this ‘lightweight’
MPC compared to the large complex commercial MPC
applications commonly employed in the process industries.

Currently however, a generic and flexible implementation
of MPC requires substantial processing even to achieve
sampling rates of around 1kHz, far more for example than
classical optimal controllers such as LQG. For smaller,
power or weight critical applications (such as those ap-
plications mentioned above), we need an alternative, high
speed and small footprint processing platform, such as
an FPGA. Developing an MPC in embedded hardware
is not unique, (see for example Bleris et al. (2006), Dua
et al. (2008), Johansen et al. (2007) for FPGA applica-
tions and Valencia-Palomo and Rossiter (2009) for PLC),
but to date, substantial algorithm modifications such as
shortening the prediction horizons, or replacing the online
optimisation with a table-lookup are required for it to be
practical.
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The kernel of an MPC is the constrained optimiser which
for linear dynamic systems operating inside linear con-
straints reduces to a quadratic program (QP). While para-
metric MPC avoids the costly online numeric optimisation
replacing it with a table-lookup, Pistikopoulos et al. (2000,
2007), and has been employed in a variety of embedded
applications, Dua et al. (2008), the approach does not scale
well, so consequently control designers typically employed
very simple models with very short time horizons, some-
times just 1 or 2 samples. For some of the applications we
had in mind for the embedded MPC, prior testing showed
that the horizons needed to be substantially greater than
this (as described in section 4), necessitating using the full
classical QP, but to streamline and optimise the algorithm
to deliver a fast, reliable solution.

A recent example highlighting the difficulties of imple-
menting MPC on FPGA hardware is described in Jo-
hansen et al. (2007) where the largest report application
is a model helicopter application with 6 states, 2 inputs,
3 outputs and only input constraints. With a prediction
horizon of 1, they achieve a loop time of 6.45µs with
202kB of FPGA memory. (To put this in perspective, our
intended target FPGA has only 45kB on chip.) Increasing
the prediction horizon to 2 (which equates to a QP with
4 decision variables), can be solved in 10µs, which while
extremely fast, requires an unrealistic 62MB to store the
parametric representation of the system.

The following sections detail our investigation into the
implementation of MPC on low-cost hardware such as
micro-controllers, DSPs, and FPGAs using a desktop PC-
based giga-hertz processor as a benchmark.

2. THE QP FORM OF THE MPC

Our implementation of the MPC follows the now standard
approach that transforms a linear discrete state-space
model with possible linear constraints into a quadratic
optimisation program. Essentially the MPC algorithm
delivers a future sequence of control moves, ∆u, over the
immediate future control horizon, Nc, such that the cost
function

J =

Np∑

j=1

||ŷk+j|k − y⋆
k+j|k||

2 +

Nc∑

j=1

||λ∆uk+j|k||
2 (1)

is minimised. The vectors ŷ,y⋆ are the estimated future
output of the plant, and future setpoints, and λ is a weight-
ing factor. The prediction, Np, and control, Nc, horizons
are important tuning parameters. The objective function
is constrained by linear plant dynamics and possible lin-
ear output, input, and input rate constraints. With some
algebraic manipulation (see Maciejowski (2002), Rossiter
(2003) for the details), the objective function and con-
straints can be re-written as

min
∆u

J =
1

2
∆uTH∆u+ fT∆u

subject to: A∆u ≤ b

(2)

which is a standard quadratic program to be solved each
sample time.

For a MIMO system with n states,m inputs and p outputs,
the number of decision variables in Eqn. 2 is mNc. From
this it follows that the dimensions of H are (mNc ×

mNc), and the dimensions of the constraint matrix A are
((2pNp + 4mNc) × mNc). Thus for a typical problem in
process control, say n = 10,m = p = 2, with horizons
Np = 50, Nc = 25, the dimensions of A is (50 × 400)
which admittedly on the large size, are consistent with the
recommendations given in (Seborg et al., 2005, p555) for
process control applications.

2.1 QP algorithms

A comparison of five QP solvers covering both commercial
and public domain; interior point and active set, is given
in Currie and Wilson (2009), but suffice to say from our
extensive testing, the infeasible interior point algorithm
given in Wright (1997), Ling et al. (2008) and, with some
algorithmic modifications, is our solver of choice. This
supports the findings in a similar study using FPGA
hardware, Lau et al. (2009), for the medium scale problems
(i.e. number of decision variables exceeding about 9) and
the comparisons reported in Bartlett et al. (2000).

2.2 Performance of the MPC algorithm

There is a subtle difference between the performance of the
algorithm solving a constrained QP, and the overall MPC.
One of the interesting features of the MPC controller
is that there is a huge difference in computation load
between solving a constrained optimisation QP with no
prior information, and solving an unconstrained optimi-
sation problem which is simply a matter of solving the
unconstrained QP where the Hessian H can be factored
offline. In practice, one pre-computes the Cholesky factor
ofH = RTR, and then online one must simply execute one
forward substitution followed by a backward substitution,
or in Matlab notation, du = R\(R’\f).

For cases when the optimisation problem is constrained,
then some savings can be made by using the previous
optimal solution, appropriately shifted, as an initial start
guess. As it turns out, this warm start procedure is not as
beneficial as it seems cutting down less than a quarter of
the iterations. Fig. 1 shows the near-perfect MPC control
and timing breakdown for a second order non-minimum
phase example, G(s) = (−5s+1)/((3s+1)(s+1)). In this
example, the limiting constraint is the rate limiter on ∆u,
and the controller is allowed to take advantage of future
setpoint changes.

In this example, one can see that the seemingly unimpor-
tant assembly of the vectors f and b in Eqn. 2 take around
0.6 ms which is comparable to the 1ms the QP takes to
solve the constrained optimisation problem using around
10 iterations. We also note that 10 iterations lie at the
upper end of the range recommended in Wang and Boyd
(2008) after investigating 12 MPC problems with different
dimensions.

3. AN MPC GRAPHICAL USER INTERFACE

To aid the design of model-predictive controllers, and to
assist new users in MPC, we have developed a graphical
user interface (GUI) for the design and testing of MPC
controllers. Fig. 2 shows the interface demonstrating the
MIMO control of a 4-tank liquid-level control problem.
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Fig. 2. The MPC graphical user interface showing a simulation of a 4-tank system. Note the depiction of the future
input and output predictions.
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Fig. 1. Timing breakdown of an MPC implementation
for a SISO non-minimum phase (inverse response)
application.

The GUI design shows the input/output trends on the left,
complete with red/green lights showing if constraints are
active. The righthand panels allows the user to interac-
tively adjust the various horizons, controller weights, and
constraints.

The tool accepts a wide variety of models: linear discrete
or continuous (or a mixture), transfer function or state-
space, with, or without deadtime. One can even specify a
nonlinear plant, although the model internally used within
the MPC will be linearised. The tool also allows one to
specify a different dynamic system for the plant than for

the model thus enabling the exploration of model/plant
mismatches.

This is no limit to the size of the models that can be
used, but the practicalities of the GUI plotting are such
that systems with more than half a dozen i/o rapidly get
confusing. However in these cases, one can readily export
the data for plotting externally.

The screen capture in Fig. 2 shows not only the output
and setpoints, but also the constraints (dotted lines), and
the future predictions for both the inputs and outputs to
the right of the solid line two thirds along the scrolling
trend.

4. A 4-TANK MPC APPLICATION

A deceptively simple, but still nonetheless challenging
problem is a four-liquid level tank control problem. The
system comprises of two sets of two coupled tanks man-
ufactured by Quanser (www.quanser.com) intended as a
control benchmark as shown in Fig. 3 and Fig. 4.

When comparing various control schemes (but not MPC)
for a similar configuration, Rajanikanth Vadigepalli and
Edward P. Gatzke and Francis J. Doyle III (2001) pointed
out that such a system can exhibit non-minimum phase
behaviour. Furthermore Åkesson (2006) has described an
MPC simulation. The underlying dynamics are mildly non-
linear principally due to the square root relation between
flow out and level, but also due to the nonlinear pump
characteristics. The latter characteristics can of course be
easily handled by a static nonlinearity in a Hammerstein
configuration, and therefore does not overly effect the
behaviour of the MPC. The basic dynamic model structure
is given in Åkesson (2006), although we added deadtime
established from in situ experiments, and from examining
how the A/D and D/A hardware actually performed.
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Fig. 3. An experimental 4-tank system. See also Fig. 4

Fig. 4. Two Quanser 2-coupled tanks connected together
to form an interacting 4 tank plant.

Given that the system is non-square, (it has only two pump
inputs to control the 4 state levels), we can only keep 2
levels at the setpoints. In this case we have chosen the two
lower tanks as controlled process variables.

The principle constraints for this application are the upper
and lower levels in all four tanks (state constraints), the
minimum and maximum pump flows (technically voltages
to the pump motors), and the rate of change of the voltage
to the pump motors.

4.1 A gigahertz processor implementation using Simulink

The controlled results following in this section were ob-
tained using our MPC algorithm coded as a C Simulink
S-function using the LAPACK and BLAS linear algebra
libraries. The data acquisition was performed using a Na-
tional Instrument DAQ card, and the real-time environ-
ment was provided using the Simulink execution tool.

Having the MPC algorithm in C means that it is possible
to port to other hardware platforms as opposed to a
Simulink model, or a Matlab m-file while maintaining
control of the algorithm that auto-coding tools typically
do not provide.

Fig. 5 shows the controlled response of the lower two tanks
to changes in setpoint with control and prediction horizons
Nc = 10 and Np = 40 and a sampling rate of Ts = 1
second. The upper two tank levels are left free, but have
upper and lower constraints. For this system, prediction
horizons greater than 27s were necessary to stabilise the
plant.
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Fig. 5. An MPC response of the 4 tank system showing
setpoint response of the lower two tanks.

Fig. 6 shows the challenging situation where the upper
tank level constraints are reduced such that they become
active. Once the state constraints are active, the QP
struggles to find a feasible solution, particularly in the
30 iterations allowed in this implementation. This is a
consequence of the infeasible interior point QP algorithm
which, if terminated prematurely, may deliver an infea-
sible solution. Because of this concern, commercial MPC
software such as Pavilion implement output constraints
as penalties in the objective function as opposed to hard
constraints. Notwithstanding in our case using the IIP
strategy, that the returned solution is actually only just
infeasible and the subsequent control is reasonable under
the circumstances.

Fig. 7 shows the effect of varying the control and prediction
horizons, in this case with a relatively coarse sample time
of Ts = 3. Extensive tests indicated that the prediction
horizon needed to be larger than 27s (Np > 9 at Ts = 3).
Note that for prediction horizons of Np = 6 (the leftmost
column in Fig. 7), the levels coincidentally (and obtusely)
settled at the opposite setpoints.
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Fig. 6. An MPC response showing active state constraints
where the QP could not find a feasible solution, but
still delivered adequate control.
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Fig. 7. An MPC response of the 4 tank system showing
varying horizon lengths with sample time Ts = 3.

The ability of MPC to still maintain reasonable control
at coarse sample times is vital because it means that one
can implement the MPC in modest hardware since the
horizons are relatively short. If we were to sample at the
recommended rate as shown in Fig. 5, then the horizons
need be Np > 27 which is memory and computationally
demanding.

5. EMBEDDED HARDWARE OPTIONS FOR AN
MPC

Our long-term goal for this project is to explore the pos-
sibility of implementing predictive control on small foot-
print, low power, low-cost hardware. This includes micro-

controllers, DSP chips and FPGAs. For benchmarking
purposes we also include giga-hertz processing units such
as those found in current desktop PCs, although we note
that such chips are not price competitive, nor are they
complete systems on a chip.

A selection of suitable hardware for the embedded appli-
cation is given in Table 1. For those chips without onboard
flash, one can either use RAM, or if memory is a constraint,
one can use external flash.

Table 1. Embedded hardware options consid-
ered for embedded MPC applications

Hardware RAM Flash clock cost
kB kB MHz $

TI Delfino C28346 516 – 300 20.85
ARM9 LPC322/50 256 – 266 11.66
PIC32 MX795 128 512 80 9.41
FPGA Spartan 3 XC3S500E 128 – 50 30.94

The ram and flash memory requirements for the 4-tank
system are given in Fig. 8 as a function of control and
prediction horizons using a sample time of Ts = 3. The
maximum amount of onboard ram and flash for each of
the chips is given in Table 1 for reference.

200
300

300

400

400

500

500

600

600 700
800

N
c

N
p

RAM Estimation [kB]

 

 

2 4 6 8 10
10

15

20

25

30

100

200

300

400

500

600

700

800

900

20

30

3
0

40

4
0

50

50 60

70

80

N
c

N
p

FLASH Estimation [kB]

 

 

2 4 6 8 10
10

15

20

25

30

20

30

40

50

60

70

80

Fig. 8. The RAM and Flash memory requirements for the
4-tank system as a function of control and prediction
horizons.

Problem specific constants such as the QP matrices H and
A can be stored in flash (with H suitably prefactored),
while variables such as the vectors f , components of b,
and the internal variables must be stored in RAM.

An approximate estimate of the maximum achievable
sampling rate for each of the 4 chips in Table 1 is given
in Fig. 9. We derived these estimates using the following
assumptions:

• No memory overhead is considered i.e. moving be-
tween registers, for loops, memory addressing

• The QP takes 15 iterations at every sample
• The KKT fails on 1/4 of constraints at every iteration
• Floating point operations on the integer micro take
30× as long

Furthermore, on the FPGA we have parallelised the arith-
metic by using three floating point units to perform the
matrix and vector operations.

It is interesting to note that the sampling rate is only
a very weak function of the prediction horizon, (shown
only for the TI chip in Fig. 9, but the others are similar),
so provided there is enough memory, long predictions do
not overly penalize the performance. Clearly the integer
PIC32 micro-controller is completely outclassed by the
more dedicated hardware.
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6. CONCLUSIONS

This paper has demonstrated a lightweight MPC appli-
cation to an experimental bench-scale 4-tank system and
shown that the algorithm works under a wide variety of
operating conditions and externally imposed constraints.
Furthermore, we have shown that the algorithm is im-
plementable on a variety of candidate embedded systems,
that the memory requirements are feasible, and the pre-
dicted sampling rates are on par, or even surpass other
reported embedded MPC applications.
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