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Abstract: The present research work aims to demonstrate the effectiveness of the new methodology of 

Design of Dynamic Experiments (DoDE) in optimizing an important pharmaceutical reaction. An easily 

developed response surface model (RSM) is used instead of a hard to develop knowledge-driven process 

model. The DoDE approach allows the experimenter to introduce dynamic factors in the design, which 

during the RSM optimization are treated as all the other factors, simplifying the analysis significantly, 

leading to the rapid optimization of batch processes with respect to time-varying decision variables. The 

DoDE approach enables the discovery of optimal time-variant operating conditions that are better than the 

optimal time-invariant conditions discovered by the classical Design of Experiments (DoE) approach. In 

the present case of the asymmetric catalytic hydrogenation, 24 experiments are conducted for the DoDE 

approach and the best run results in a 45% improvement comparing to the best run of 17 runs of the DoE 

approach. This is achieved by applying a decreasing temperature profile during the batch reaction. 

Optimization of the economic performance index of the process through the respective response surface 

models defines an optimum operation. The DoDE optimum operation is better than the respective one 

through the DoE. The DoDE advantage increases as the required quality level for the final product is 

higher. For the medium quality, the DoDE approach results in an improvement of 30% over the DoE one.   



1. INTRODUCTION 

The development of a new batch pharmaceutical process, like 

the asymmetric catalytic hydrogenation, takes place under 

severe time limitations. Typically the initial process is not 

quite optimal and continuous improvements are required over 

the life of the process (Pisano, 1996, 1997). Consequently 

such processes are initially far from being optimized unless a 

systematic Design of Experiments (DoE) plan has been 

executed. However the classical DoE approach does not 

consider time-varying conditions during the batch process, 

such as the operating temperature, the co-reactant semi-batch 

feeding flow rate or the cooling rate in crystallization, among 

many others. On the other hand, the existing methods for 

optimal design of dynamic experiments require a model for 

the process (Espie and Macchietto, 1989). The present paper 

will examine the use of the recently developed Design of 

Dynamic Experiments (DoDE) (Georgakis, 2008, 2009) in an 

important batch industrial catalytic reaction. 

1.1 Industrial Example 

The asymmetric catalytic hydrogenation of S-enamide is a 

very important and frequently encountered type of reaction in 

the production of pharmaceuticals. Specifically, during the 

first development steps it has been demonstrated that the 

desired (R,S) product could not be selectively obtained out of 

the four stereoisomers resulting from the hydrogenation step 

(Singh et al., 2009). Identifying a superior complex catalyst 

has been the first important step in order to reduce the major 

products in two. The system on focus here uses such a 

catalyst and thus consists of only two parallel reactions that 

are competing for the sites of the catalyst.  
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The performance of such process is not directly proportional 

to the addition of catalyst, which is custom made and very 

expensive. In addition, the reaction system is sensitive to the 

selection of the proper conditions that favor the maximum 

yield towards the desired product (Blackmond, 2000).  

1.2 Process Performance 

This process needs to be optimized by maximizing the yield 

and directing the selectivity of the reaction towards the 

desired product, optimizing a process response.  

The main process responses for the hydrogenation process 

are: yield towards the desired product (Y), diastereo- 

selectivity (de), and the economic performance index (PI). 
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Diastereoselectivity is calculated by Eq. 1.3 and the other 

response, Y, is accounted in the PI, Eq. 1.4. 
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The economic performance index describes the process 

performance using industrial cost data, and it is subject to 

constraints derived from product quality specifications. 

bNorphosEnamideSR tVCCCPI 432)4,1(1 *][    (1.4) 

subject to: de > 95% 

)/($costgy  labor/ener),/($costcatalyst 

)/($costreactant    ),/($priceproduct 

),/()/(  :

43

21

)4,1(

kgkg

kgkg

andlkgYClkgCwhere EnamideSR









  

This index needs to be maximized with respect to the reaction 

conditions; such as temperature, catalyst loading, excess of 

the reactant relative to its solubility at the initial conditions, 

and batch time.  

The optimization first involves the development of an 

appropriate response surface model for the yield to the 

desired product, Y, and de. After substituting these to Eq. 1.4, 

we find the operating conditions that maximize the economic 

performance index, while the diastereoselectivity is kept 

above a specific bound, through constrained optimization 

(Edgar, 2001). Sequential Quadratic Programming (SQP) is 

then utilized to solve the constrained problem. 

2. EXPERIMENTAL PART 

In order to acquire the required data for the optimization, we 

perform statistically designed experiments using state of the 

art equipment, at the facilities of Sepracor, Inc. The hydrogen 

uptake is monitored online and sampling is performed at the 

end of the reaction. 

2.1 Equipment and Experimental Setup 

The experiments are performed initially in the ChemSCAN, a 

small scale reactor system with 8 parallel reactors of 20mL 

each, and then in a larger scale reactor vessel of 1000mL in 

the Büchi autoclave controlled by the Büchi gas press-flow 

controller, (BPC). The main advantages of the high pressure 

ChemSCAN reactor are: 1) the high throughput capability to 

test several conditions, 2) the small volume that allows 

screening even if small quantities of material are available, 

and 3) the online monitoring of hydrogen uptake. However, 

the magnetic agitator prevents ideal mixing, and possibly 

introduces mass transfer limitations in the system. The 

1000ml hastelloy reactor operated in the Büchi autoclave 

coupled with BPC, resolves the problems that appear when 

ChemSCAN is used. In the Büchi system, we achieve precise 

pressure control, exact measurement of the headspace and 

ideal mixing, using a gas shaft agitator and a baffle. The 

jacket temperature for both reactors is controlled by the 

Lauda Proline RP 845C chiller. The chiller has the capability 

to run time evolving temperature profiles, which is needed in 

the case of the DoDE runs and to apply feedback temperature 

control, attaching an external Pt100 probe that controls the 

reactor temperature instead of the jacket temperature. Finally, 

the reactor temperature is monitored and logged during the 

reaction by the automation tool of HEL, ChemLog.   

2.3 Sampling and Analytical Data  

During the reaction, the hydrogen uptake is monitored online 

using the BLS2 software, developed for use with the Büchi 

hydrogenation equipment. BLS2 handles data recording, 

control functions, data export and is used to control the BPC.  

The end of the reaction is defined as the point where the 

hydrogen uptake reaches a plateau. The sampling is done at 

the end of each reaction. HPLC analysis of the samples 

results the concentration of the reaction mixture at the end 

and enables the calculation of the yield and the de. 

3. METHODOLOGY 

Classical factorial design of experiments has been used 

initially to identify the factors that significantly affect the 

system. Then, D-Optimal DoE and D-Optimal DoDE have 

been used to design experiments. The experimental results 

have been used to develop response surface models. 

Optimization has been performed using the two models. 

3.1 Classical Design of Experiments (DoE)  

The classical Design of Experiments (DoE) approach entails: 

1) the selection of the factors that significantly affect the 

process, 2) the definition of the operating window for each 

factor, and  3) the selection of the experimental design, out of 

numerous choices  available like: full or half factorial, D-

optimal, Placket-Burnham, Taguchi, central composite and 

others developed according to the needs of specific types of 

problems (Montgomery, 2005).  

For example, for the asymmetric catalytic hydrogenation 

case, the significant process factors initially are temperature, 

pressure, and catalyst loading. A preliminary 3-factor 2-level 

factorial design provides us valuable information regarding 

the effect of those variables on the responses of interest.  

 

Fig. 1. Normal Probability Plot of the effects on de. 

The Analysis of Variance (ANOVA) of the preliminary 

experiments provides the guidelines for further process 

optimization. From the ANOVA of the de (Fig. 1), it is 

obvious that the temperature is the factor with the most 

significant effect on the process (Burnham and Anderson, 

1998; Dillon and Goldstein, 1984). Thus, this is the variable 

that we should examine in greater detail into the next phase 

of experimental design. At the same time, ANOVA of the 
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yield, Y, response surface also shows that temperature is the 

most important variable and the next most important is the 

catalyst loading and it should be kept as a design factor. 

Pressure does not affect the de, and it is less important for the 

yield, so it will be omitted in the next design loop. Thus, the 

second phase of DoE experiments will include 2 out of the 3 

factors of the preliminary design, plus two more factors 

important for the final process development: the initial excess 

of the reactant and the batch time.  

Keeping in mind that we seek to eventually optimize the 

process using a response surface model, we need a response 

surface design to plan the experiments. The most common 

response surface design is the central composite design, 

CCD. In order to fit a four factor full quadratic model it 

would require 28-30 runs, depending on the number of center 

points. Because each run is expensive and time consuming, 

we select a D-Optimal experimental design instead, that 

results in the minimum number of runs in order to fit a four 

factor quadratic model. The D-optimal design minimizes the 

volume of the joint confidence region of the vector of 

regression coefficients.  

The formula that expresses the volume is: 

  1
'


 XXV   (3.1) 

where X: the design matrix. A measure of relative 

efficiency, eD , is used in order to compare the D-optimal 

design, X2, with the CCD, X1, when a p parameters response 

surface model is considered. 
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Table 1. 4-Factor D-Optimal DoE  

Run x1 (T) x2 (RE) x3 (CL) x4 (BT) 

1 -1 0 1 -1 

2 1 -1 1 1 

3 -1 -1 -1 -1 

4 -1 1.67 1 1 

5 1 -1 1 -1 

6 -1 -1 -1 1 

7 -1 -1 1 0 

8 -1 1.67 -1 0 

9 1 1.67 -1 1 

10 1 1.67 -1 -1 

11 -1 1.67 0 -1 

12 1 1.67 1 0 

13 0 1.67 1 -1 

14 1 -1 -1 0 

15 0 0 0 0 

16 0 0 0 0 

17 0 0 0 0 

In Table 1, the coded values of the factors are given. The 

corresponding uncoded intervals for each factor are: 1) 

temperature, T   [20
o
C, 45

o
C], 2) catalyst loading, CL   

[0.03mol%, 0.09mol%], 3) reactant excess, RE   [0%, 

500%], and 4) batch time, BT   [2h, 4h]. 

 

Fig. 2. Temperature levels for D-Optimal DoE. 

Fig. 2 illustrates the three time-invariant (constant with time) 

trajectories that the temperature follows during the runs of the 

D-Optimal DoEs. The common characteristic of all the 

classical experimental design techniques is that the value of 

each decision variable is kept constant during the experiment. 

This characteristic is the main difference between the 

classical DoE and the new DoDE approach.  

3.2 Design of Dynamic Experiments (DoDE) 

The Design of Dynamic Experiments (DoDE) is a systematic 

approach in designing experiments in which some factors 

will be varied with time in order to discover optimal 

operating condition in a equally expedient manner as in the 

classical DoE approach (Georgakis, 2008, 2009). The DoDE 

approach replaces the static value of some factor with a time 

dependant profile characterized by a linear combination of 

some basis time functions, appropriately selected. 

Besides the issues that are important in the DoE design, the 

DoDE design entails the choice of the factor(s) whose 

variation with time will be considered and the selection of the 

basis functions to describe time dependence along with the 

maximum number of such functions to be used. 

In applying the DoDE approach in the case of the asymmetric 

catalytic hydrogenation, we include all the factors of the 

classical DoE design described in the previous section, 

namely: temperature, catalyst loading, initial amount of the 

reactant and batch time.  

According to the ANOVA analysis of the preliminary design, 

temperature has been identified to have a significant effect on 

the process outcome. Consequently, this will be the one 

whose time dependency will be examined. The orthogonal 

basis function that will be used  is the Shifted Legendre 

Polynomials (Abramowitz and Stegun, 1970). Here we will 

consider only the first two shifted Legendre polynomials as 

they will serve our goal to operate our process under linearly 

changing temperature profiles.  

)()()( 1100  PPP   (3.3) 

12)(1)( 10   PandP  (3.4) 
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Because of the two orthogonal polynomials used, the initially 

four factors become five, with two describing the temperature 

vs. time profile. In the DoDE as well in the DoE designs the 

independent variables (factors) are defined in terms of the 

coded (dimensionless) variables that are between [-1,1]. 

There is an exception here on the x4 factor, where the 

maximum value is 1.67, instead of 1. 

Because, the temperature profile is subject to the constraint 

1)(1  P  this requires that: 

11 10    (3.5)   

The values of the coefficients a0 and a1 are the two factors (or 

dynamic sub-factors) describing the temperature profile. 

They can individually take the values of -1, 0 and +1 as all 

other factors and they have also to satisfy eq. (3.5).  

The set of experiments is defined in coded variables using the 

rowexch function of the Matlab Statistics toolbox and it is 

presented in Table 2.  

Table 2. Constrained 5-Factor D-Optimal DoDE in coded 

variables. 

Run x1 (a0) x2 (a1) x3 (RE) x4 (CL) x5 (BT) 

1 -0.5 0.5 -1.0 1.0 -1.0 

2 0.5 0.5 -1.0 1.0 1.0 

3 -0.5 0.5 1.67 1.0 1.0 

4 0.5 0.5 -1.0 -1.0 -1.0 

5 0.5 -0.5 -1.0 -1.0 1.0 

6 0.5 -0.5 1.67 -1.0 -1.0 

7 1.0 0.0 0.0 -1.0 1.0 

8 0.5 0.5 1.67 0.0 0.0 

9 0.0 -1.0 1.67 -1.0 1.0 

10 0.0 -1.0 0.0 1.0 0.0 

11 -0.5 0.5 1.67 -1.0 -1.0 

12 0.5 -0.5 1.67 1.0 1.0 

13 -0.5 -0.5 -1.0 -1.0 -1.0 

14 -0.5 0.5 -1.0 -1.0 1.0 

15 -0.5 -0.5 -1.0 1.0 -1.0 

16 1.0 0.0 -1.0 1.0 -1.0 

17 0.0 0.0 1.67 0.0 -1.0 

18 0.5 0.5 1.67 1.0 -1.0 

19 -0.5 -0.5 1.67 1.0 0.0 

20 -1.0 0.0 -1.0 1.0 1.0 

21 -0.5 -0.5 0.0 0.0 1.0 

22 0.0 0.0 0.0 0.0 0.0 

23 0.0 0.0 0.0 0.0 0.0 

24 0.0 0.0 0.0 0.0 0.0 

 

The corresponding uncoded intervals for each factor are: for 

1) temperature, T   [20
o
C, 45

o
C], 2) catalyst loading, CL   

[0.03mol%, 0.09mol%], 3) reactant excess, RE   [0%, 

500%], and 4) batch time, BT   [2h, 4h]. 

 

Fig. 3. Temperature levels for the 5-Factor D-Optimal DoDE  

In Fig. 3, the temperature profiles are presented for the three 

time horizons of the D-Optimal design. These profiles result 

by substituting the design coefficients in Eq. 3.5 for each run 

and transferring dimensionless time, τ, into the dimensional 

one, t, through the batch time.  

The procedure of the temperature profiles construction is 

presented in Table 3. The linear combination of the design 

coefficients (columns 1 & 2) lies in column 3 and the 

translation of the profiles in uncoded variables in column 4. 

For τ=0, we get the initial temperature for the reaction and for 

τ=1 the final one. 

Table 3. DoDE Temperature profiles construction.  

Run x1 (a0) x2 (a1) P(τ) T(t) (
o
C) 

1 -0.5 0.5 -0.5+0.5(2τ-1) 2032.5 

2 0.5 0.5 0.5+0.5(2τ-1) 32.545 

3 -0.5 0.5 -0.5+0.5(2τ-1) 2032.5 

4 0.5 0.5 0.5+0.5(2τ-1) 32.545 

5 0.5 -0.5 0.5-0.5(2τ-1) 4532.5 

6 0.5 -0.5 0.5-0.5(2τ-1) 4532.5 

7 1.0 0.0 1.0+0.0(2τ-1) 45 

8 0.5 0.5 0.5+0.5(2τ-1) 32.545 

9 0.0 -1.0 0.0-1.0(2τ-1) 4520 

10 0.0 -1.0 0.0-1.0(2τ-1) 4520 

11 -0.5 0.5 -0.5+0.5(2τ-1) 2032.5 

12 0.5 -0.5 0.5-0.5(2τ-1) 4532.5 

13 -0.5 -0.5 -0.5-0.5(2τ-1) 32.520 

14 -0.5 0.5 -0.5+0.5(2τ-1) 2032.5 

15 -0.5 -0.5 -0.5-0.5(2τ-1) 32.520 

16 1.0 0.0 1.0-0.0(2τ-1) 45 

17 0.0 0.0 0.0-0.0(2τ-1) 32.5 

18 0.5 0.5 0.5+0.5(2τ-1) 32.545 

19 -0.5 -0.5 -0.5-0.5(2τ-1) 32.520 

20 -1.0 0.0 -1.0-0.0(2τ-1) 20 

21 -0.5 -0.5 -0.5-0.5(2τ-1) 32.520 

22 0.0 0.0 0.0-0.0(2τ-1) 32.5 

23 0.0 0.0 0.0-0.0(2τ-1) 32.5 

24 0.0 0.0 0.0-0.0(2τ-1) 32.5 
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3.3 Response Surface Model Technique Review (RSM) 

The Response Surface Method (RSM) is used to quantify the 

dependence of yield towards the desired product, Y, and the 

diastereoselectivity, de, on the experimental factors (Box and 

Draper, 2007; Montgomery, 2005). The response surface 

model has a polynomial form as it represents a local Taylor 

series approximation of the true dependence on the input 

factors. Here we estimate quadratic models.  

The RSM model for Y is used to calculate the dependence of 

the economic performance index, PI, on the experimental 

conditions. Constrained optimization seeks to calculate the 

conditions that maximize the performance index, PI, while 

the value of the diastereoselectivity, de, is higher than the 

value of the product quality required like 0.95, 0.96 or higher. 

The optimum values of the two first factors, a0 and a1, relate 

to the optimal temperature profile for the process of 

asymmetric catalytic hydrogenation examined here.  

4. EXPERIMENTAL RESULTS 

After running the experimental designs presented in Tables 1 

& 3, and performing the HPLC analysis of the samples we 

are able to calculate the yield, the de (Eq. 1.3) and the PI (Eq. 

1.4) for each run.  

The PI is initially used to rank the desirability of the sets of 

conditions tested in the two designs. Summarizing the results 

we get the following table: 

Table 4. The best PIs, de and Y for DoE and DoDE 

experiments. 

 
PI 

($/l) 
de 

(%) 
Yield 
(%) 

T  
(oC) 

CL 
(mol%) 

RE 
(%) 

BT 
(hr) 

Best 

Initial 
DoE 

Run 

726 96.8 95.4 20.0 0.03 500 3 

Best 
Initial 

DoDE 

Run 

1076 94.6 96.2 
45
32.5  

0.06 500 1.0 

Center 

Point 
500 95.5 97.3 32.5 0.06 250 0.7 

The best DoDE run, closest to 95% de specification, appears 

a PI 45% better than the one of the best DoE run and this is a 

significant improvement in the process. This was achieved by 

performing 24 vs. 17 experiments for the DoDE and DoE 

designs respectively.  

The improvement is mainly achieved because the volumetric 

productivity of the process is increased for the best DoDE 

run. The reactant excess is for both runs at the same relative 

level, but because it is a function of solubility, the initial 

temperature is the factor that defines how much reactant 

could be loaded in each batch. Thus, the volumetric 

productivity is higher the higher the initial temperature is, but 

the final diastereoselectivity decreases the higher the 

temperature the reaction runs at. The decreasing temperature 

profile in the DoDE benefits the process in the fashion that it 

allows the maximization of volumetric productivity keeping 

product quality close to specification. 

5.  RSM MODELING AND OPTIMIZATION 

The economic performance index is the main response that 

will be optimized, while the de is the secondary response that 

is required to be above 95%. The response surface of the 

secondary response, de, is developed and used as a non-linear 

constraint during the SQP optimization of the PI. The 

regression coefficients for the two RSM’s are calculated 

utilizing the design matrices as the regressors and the 

measured values of the Y and de as responses. In some of the 

runs the real reaction completes at an earlier time than the 

designed batch time, judging by the online monitoring of the 

hydrogen uptake. Thus, the initially planned batch time, BT, 

for some experiments needs is reduced to a value that 

corresponds to the actual reaction time. Consequently, the 

DoDE coefficients a0 and a1 are re-calculated. 

5.1  DoE Response Surface 

The full quadratic response surface model for the DoE design 

of 4 factors, involves 15 terms. These include the constant 

term, the 4 linear terms of the respective decision variables, 

the 6 second order interactions between factors and the 4 

quadratic terms. The ANOVA of the full model reveals 

which of the terms are significant (p-value<0.05). 

Insignificant terms are removed, to obtain the final model.   

2
1114114

3113211222110

xxx

xxxxxxYDoE








 (5.1) 

A model with only 7 terms, instead of the initial 15, is 

sufficient to accurately describe the process, eq. 5.1. The 

model is quite accurate, as demonstrated by the following 

statistical criteria: R
2
=95.9%, R

2
adj=92.7%, and PRESS=0.15. 

For the de response surface, a 7 terms model describes the 

surface with: R
2
=98.1%, R

2
adj =96.9%, and PRESS=6.64. 

2
3334224

3223311322110

xxx

xxxxxxdeDoE


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


 (5.2) 

5.2  DoDE Response Surface 

The full quadratic response surface model for the DoDE set 

of experiments involving five factors consists of 21 terms. 

These include the constant term, the 5 linear, the 10 second 

order and the 5 quadratic terms. The ANOVA step with p-

value<0.05 retains only the following 8 terms:  

2
42254454334

52242112330

xxxxx

xxxxxYDoDE








  (5.3) 

Here the model is less accurate because of the asymmetrical 

enlargement of the design space caused by experiments that 

run faster than expected and result in shorter batch times. In 

this case, R
2
=84.6% R

2
adj=77.9%, and PRESS=0.76. For the 

de% response surface, a 6 terms model is sufficient with: 

R
2
=89.5%, R

2
adj=86.6%, and PRESS=8.44.  

2
444

2
111

53355225110

xx

xxxxxdeDoDE








(5.4) 
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5.3 Constrained Optimization 

The constrained optimization problem is solved using the 

SQP algorithm of the Optimization Toolbox of Matlab 

R2008b that utilizes the Quasi Newton approach and line 

search method in order to reach the optimum (Biegler, 1984). 

The optimization has been run for different final product 

quality (de > 0.95, 0.96 or 0.97) and the medium quality 

optimum (de > 0.96) is given in Table 5.  

The constraints involve upper and lower bound for each of 

the decision variables and the eq. 3.6 constraints. The latter 

uses the response surface model developed for the de, which 

depends nonlinearly on the decision variables.  

Table 5. Optimization results and optimum runs. 

 
T   

(oC) 

CL 
(mol

%) 

RE 

(%) 

BT 

(hr) 

de 

(%) 

Yield 

(%) 

PI   

($/l) 

Opt. 

DoE & 
CI 

22 0.06 500 1.4 
96.5

±0.5 

94.3 

±9.3 

1061.9 

± 18.9 

Exp  
DoE 

22 0.06 500 1.4 96.9 83.3 567.2 

Opt. 

DoDE & 

CI 

45
20 

0.08 500 3 
96.4
±0.4 

99.0 
±17.3 

1386.1 
± 37.8 

Exp 
DoDE 

45
20 

0.08 500 3 96.2 92.6 1223.4 

The calculated optimal DoDE run for a medium quality 

involves a decreasing temperature profile and predicts a 

30.5% improvement in the process than the optimal DoE run. 

This is a significant improvement in the process with just 

seven additional experiments. Performing the experiments in 

the optimal conditions shows an even larger improvement is 

achieved, as indicated in Table 5, where PIDoDE,exp=1223.4 $/l 

and PIDoE,exp=567.2 $/l. However, this partially happens 

because the designed batch time is not sufficient for the 

reactions to reach completion. Thus, the need for feedback 

control and an online monitoring technique appears. The 

hydrogen uptake monitoring serves this purpose in this case, 

and after we sample, we let the reactions run until 

completion; the DoE for 0.4hr more and the DoDE for 0.1hr 

more. After the completion of the reactions, the DoDE run 

shows a 68.1% higher PI comparing to the respective DoE 

one; with YDoDE,exp_final=95.2%, PIDoDE,exp_final=1290.4($/l), and 

YDoE,exp_final=97.7%, PIDoE,exp_final=767.5($/l).  

The decreasing temperature profile results in an increase of 

the solubility of the reactant initially, while it preserves the 

high quality of the product at the end. This provides the 

option of loading a higher amount of reactant in the reactor in 

the beginning, and leads to increased volumetric productivity. 

At the same time, due to the sensitivity of the product quality, 

which is lower at high temperatures (unacceptable quality 

results if the reaction is run at a constant temperature above 

39
o
C) and high at the low end of the temperature range, the 

process proves so much more valuable. Even though it 

enables reaction to start at a higher temperature, most of the 

course of the reaction is completed at the part of the range 

that provides high quality product.   

6. CONCLUSIONS 

The pharmaceutical reaction of asymmetric catalytic 

hydrogenation has been investigated in this research work. 

We have compared the classical DoE and the novel DoDE 

design the experiments methodologies. The DoDE approach 

examines new optimization possibilities and enables further 

process optimization in new trajectories that cannot be 

studied with the DoE approach. The optimal DoDE run that 

involves a decreasing temperature profile for a medium 

quality product predicts 30.5% improvement over the best 

optimal DoE run. The RSM predicts larger differences the 

better the quality of the final product required. This 

difference is even larger if the experiments that the optimum 

predicts are run, reaching 68.1%. The decreasing temperature 

profile results in an increase of the solubility of the reactant 

initially that enhances volumetric productivity, faster reaction 

and high quality end product. Concluding the DoDE 

approach is a significant contribution towards the data-driven 

rapid optimization of batch reactions using an RSM model.  
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