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Abstract: An artificial neural network (ANN) model for the prediction of glucose concentration in a 
glucose-insulin regulation system for type 1 diabetes mellitus is developed and validated by using the 
Continuous Glucose Monitoring System (CGMS) data. This network consists of structured framework 
according to the compartmental structure of the Hovorka-Wilinska model (HWM), and an additional 
update scheme is also included, which can improve the prediction accuracy whenever new measurements 
are available. The model is tested on a real case, as well as long term prediction has been carried over an 
extended time horizon from 30 minutes to 4 hours, and the quality of prediction is assessed by examining 
the values of the four indexes. For instant, the overall Clarke error grid (CEG) Zone A value is up to 
100% for the 30-min-ahead prediction horizon with update. Therefore, for practical purpose, our results 
indicate that the promising prediction performance can be achieved by our proposed structured recurrent 
neural network model (SRNNM). 
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1. INTRODUCTION 

Diabetes mellitus is one of the most common metabolic 
diseases characterized by an incapability to control blood 
glucose concentration in the body, and there exist two basic 
types of diabetes mellitus, including type 1 and type 2. 
Particularly, type 1 diabetes mellitus (T1DM) is caused by 
failure of the pancreas to secrete insulin due to the 
autoimmune destruction of the pancreatic islet β-cells. 
Therefore, the patients with T1DM must rely on daily insulin 
injections/infusions for the regulation of blood glucose, i.e., 
insulin-dependent diabetes mellitus (IDDM). Those daily 
injections/infusions, insulin therapies, artificially mimic the 
endogenous insulin secretion presenting in normal human 
bodies to maintain their blood glucose (BG) levels within an 
acceptable range.. This mimic mechanism can be attained to a 
certain degree by continuous subcutaneous insulin infusion 
(CSII) with an insulin pump, which administers continuous 
basal insulin infusion rate and prandial insulin boluses. 
However, based on infrequent subcutaneous BG 
measurements, this administration of such insulin infusions to 
prevent hyperglycemia and hypoglycemia and to maintain 
BG at an acceptable level is still an issue, especially when the 
patient has irregular diets or activities. Recently, the CGMS 
has been a commercialized device which can provide 
maximal information about BG levels throughout a long 
period of time and can facilitate physicians to make optimal 
therapy recommendations for the patients with T1DM. 

For the improvement of insulin therapies, currently, a number 
of model-based glucose-insulin regulation systems have been 
developed and can be used to analyze past therapies, to 
predict future BG levels and to give therapy 
recommendations. So far, those systems are either based on 
physiological or empirical models. One of the pioneering 
papers in this field is Bolie (1961), and the author proposed a 
physiology simple model. However, the real beginning of 
modelling glucose-insulin dynamics started with the so-called 
minimal model. (Toffolo et al., 1980) (Bergman, 2003) The 
authors stated that minimal model made a few assumptions 
that may not be necessary or realistic. Another more common 
ODE model was developed Hovorka et al. (2004) and then 
modified by his co-workers. (Wilinska et al., 2005) Man et al. 
(2007) presented a more complicated simulation model in 
normal humans that describes the physiological dynamics 
that occur after a meal. In addition, Sorensen et al. (1985) 
developed another complicated physiology models, which 
describes biochemical species dynamics at each significant 
organ site. On the other hand, the other type of model-based 
systems, empirical models, includes dynamic input-output 
models and neural networks. Among dynamic input-output 
models, generally, autoregressive exogenous input (ARX) 
models were widely used. (Bellazzi et al., 1995) 
Autoregressive moving average exogenous input (ARMAX) 
models are similar to ARX models but describe the prediction 
errors as moving averages of noise. (Finan et al., 2009) By 
comparison between those two kinds of empirical models, 
neural networks have emerged as techniques that can 
potentially deal with complicated biological problems, for 

Proceedings of the 9th International Symposium on
Dynamics and Control of Process Systems (DYCOPS 2010),
Leuven, Belgium, July 5-7, 2010
Mayuresh Kothare, Moses Tade, Alain Vande Wouwer, Ilse Smets (Eds.)

MoAT1.1

Copyright held by the International Federation of Automatic Control 228



 
 

     

 

example, the highly nonlinear and individual-specific 
dynamics of insulin-glucose regulation systems. (Trajanoski 
and Wach, 1998) have used neural networks to identify a 
nonlinear ARX (NARX) model in simulation study. Tresp et 
al. (1999) studied the application of neural networks and 
compared the performance for two different types of neural 
networks. Mougiakakou et al. (2005) proposed a system 
based on the combination of compartmental models and 
neural networks, and validated by the data from invasive 
finger lacing test. Despite that the aforementioned 
mathematical models have been reported, there is still a need 
for on-line long term prediction model for implementing 
real-time control and forecasting hypo/hyper-glycemia by 
using the CGMS data which can provide maximal 
information. In this work, we proposed a prediction model 
with a structured neural network, and this model was 
identified and validated by the CGMS data from patients with 
T1DM who have regular meals and insulin dosages. 
Furthermore, an additional update scheme is also embedded 
in our model so that the multi-steps ahead prediction can be 
updated whenever new measurements are available.  

2. DEVELOPMENT OF PREDICTION MODEL 

In general, development of empirical or semi-empirical 
models for a dynamic system needs sufficient excitations to 
the system. Nevertheless, sufficient excitations cannot be 
arbitrarily applied to a human body, especially who has 
T1DM. Also for a system with high order dynamics and high 
nonlinearity, conventional black-box approach could not 
yield a good model for long-term prediction. Upon the above 
considerations, a physical model is required, and neural net 
models are then used to realize this physical model for 
prediction purposes. In this work, the model developed by 
Hovorka et al. (2004) and modified by Wilinska et al. (2005) 
is selected, because it has a reasonable trade-off between 
simplicity and physiology. Briefly, this nonlinear model 
consists of a glucose subsystem, an insulin subsystem, and an 
insulin action subsystem. An additional factor of this model 
is that it can describe nonlinearity because of both the insulin 
actions and physiological-based saturation effects. In the 
following sections, this model will be referred to as the 
Hovorka-Wilinska model (HWM). Because the HWM totally 
has nine ordinary differential equations, it would encounter 
difficult initialization steps, if the time origin is required to be 
able to move arbitrarily for practical on-line implementation 
purpose. In comparison, our proposed ANN model can 
reduce those difficult steps. The data from sufficient 
excitations on the identified HWM to  can be used for ANN 
model training, and those sufficient data can avoid model 
overfitting.  In addition, the compensation RNN (Recurrent 
Neural Network) to take care of the discrepancy between the 
HWM data and the CGMS data from the real patient is 
constructed and embedded in our model. In the following, we 
will briefly demonstrate the identification of the HWM and 
the model with structured RNN are briefly introduced.  

2.1  The identification of the HWM 

The detailed equations of the HWM are given in Appendix A. 
In this model, totally, there are fourteen parameters which 
must be determined for each specific patient. They are,  
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Firstly, we assumed that the insulin dosages and the content 
of each meal provided from a diary and the BG data collected 
by the CGMS are accurate during an experimental period. 
Using only those first two days of the data, the parameters of 
the HWM are then identified to fit the data by minimizing the 
objective function given in (1). 
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where φ is the weight, ti is the initial time of experiment 

period, tf is the final time of the data , G(t) are the 

measurements recorded on the CGMS, G(t) is computed by 

integrating the HWM, 0
fS is the targeting fasting level value 

taken as pre-breakfast (one hour) average in the data set, and 
Sf(p) is the fasting level obtained from the HWM. The latter 
term in this objective function is added for the purpose of 
increasing the physiological feasibility, and this term is given 
as zero if the Sf(p) value is within the tolerant range. 

In addition, the Simulated Annealing (SA) optimal algorithm 
was adopted to search the optimal parameters because this 
algorithm has more potential for finding the global minimum 
of the objective function instead of the local minimum. The 
initial guess of those parameters was taken from the 
literatures (Hovorka et al., 2004, Wilinska et al., 2005), and 
the initial conditions of the state variables were calculated by 
solving the nonlinear algebraic equations.  Next, several 
experiments were conducted for determining the adopted 
algorithm parameters (e.g., the initial temperature, 
temperature decrement). After fitting the model to CGMS 
data, we assumed the lack of fit in the extending time horizon 
is due to imprecise quantification of carbohydrate intakes and 
different intake or digestion durations for each meal. We 
slightly modified the carbohydrate intakes (<5%), and 
searched the acceptable tmax,G value of each meal. 

2.2  Prediction model with structured RNN 

Based on the HWM, these identified parameters generate data 
for neural network training. A prediction model with 
structured RNN was developed based on the structure of this 
compartmental physiological HWM. A block diagram of our 
proposed SRNNM is shown in Fig. 1 and Fig. 2. The two 
inputs in this model are meal (u1={DG, tmax,G}) and insulin 
(u2={ubasal, ubolus}). As can be seen, the sub-RNN for q3 was 
constructed to mimic the dynamic response of q3 from (17) - 
(20) in Appendix A. Similarly, sub-RNNs for x1, x2, and x3 
were constructed to describe the dynamic behaviour from 
(14), (15), and (16), respectively in Appendix A. Then, RNN 
for Q1 & Q2 was constructed for (8) and (9) in Appendix A. 
After that, an additional sub-RNN to compensate for the bias 

between G(t) and the CGMS data G(t) due to the 

insufficient dynamic description in the HWM was also 
constructed. To be specific, 
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where 1δ is referred to as the bias related to the insufficiency 

in the HWM, and 2δ is the residual of the model fit.  By 

combining these sub-networks, a prediction network was 
constructed. 
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Fig. 1. The first part of the SRNNM. 
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Fig. 2. The second part of the SRNNM. 

2.3  New available measurements update scheme 

In addition, we designed an update scheme to improve the 
performance of prediction whenever new measurements are 
available. As shown in Fig. 1 and Fig. 2, when the blood 
glucose was reported by a new infrequent measurement (i.e.,  

*G (t) ), the difference between *G (t) and Ĝ(t) was 

weighted, then added to Ĝ(t) to estimate Ĝ(t | t) .  

3. PREDICTION AND ACCURACY OF THE MODEL 

3.1  Long term prediction 

The following prediction horizons were employed in this 
work (sampling time: 5 min): 6-step-ahead (30-min-ahead), 
24-step-ahead (2-hr-ahead), and 48-step-ahead (4-hr-ahead). 

Firstly, the uncorrected prediction of BG (i.e., Ĝ(t | t 1)− ) 

was obtained from implementing the SRNNM that consists of 
Fig. 1 and Fig. 2. By recursive use of this model, the 
prediction of BG can be computed along the extended time in 

the future, i.e., Ĝ(t i | t 1);i 1,2, , N+ − =  . 

The predictive BG can be refreshed whenever new 
measurement of BG is available to work the update scheme 
in a manner of the following: 

 *ˆ ˆ ˆG(t | t) G(t | t 1) w[G (t) G(t | t 1)]= − + − −  (3) 

The appropriate proportional weight w  can be obtained by 
optimizing the following objective function given in (4). 
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In this study, we assumed new measurement is available in 
the half-time of prediction horizon.(e.g., 30-min-ahead 
prediction is updated at 15-min with a new measurement).  

3.2  Quantification of model prediction accuracy  

An inherent difficulty in quantifying model prediction 
accuracy is choosing the indexes. Therefore, in this work, we 
used four indexes which were used in the literatures or used 
by physicians to quantify the performance of the blood 
glucose control. 

The first index is the Clarke error grid analysis (CEG). 
(Clarke, 2005) As shown in Fig. 3, each prediction-reference 
concentration value pair falls into one of five zones, labelled 
A-E. Especially, the data pair falling into Zone A is 
considered clinically accurate.  
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Fig. 3. The Clarke error grid (CEG). 
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The second index is the FIT which is a statistic metric 
explained by the model prediction:   

 
ˆG(t) G(t)

FIT (1 ) 100%
G(t) G(t)

−
= − ×

−
 (5) 

where G(t) is the vector of CGMS data, Ĝ(t) is the model 

predicted glucose, and  G(t) is the mean of G(t). 

Moreover, there exists another index for stressing the 
importance of ignoring the outlier error. This index is the 
median relative absolute difference (MRAD), the relative 
absolute difference (RAD) is shown in (6), and MRAD is the 
median of RAD. 

 
ˆG(t) G(t)

RAD(t) 100%
G(t)

−
= ×  (6) 

Another index is the sum of squares of the glucose prediction 
error (SSGPE) corresponding to the normalized SSE, and this 
index can be referred when compared with other research 
results. 

 

2

2

ˆ(G(t) G(t))
SSGPE 100%

G(t)

−
= ×


 (7) 

4. CASE STUDY 

4.1  The identification of the HWM 

The subject with type 1 diabetes (female, 55 kg, BMI 20 
kg/m2) was treated by the CSII therapy in this study. The 
meal contents and insulin dosages were recorded, and the 
blood glucose measurements were collected by the CGMS 
(Medtronic Minimed, Northridge, CA) for three days during 
the experiment period. No special arrangement was made and 
this patient was asked to live in her normal way with meals 
and work as usual. The rapid acting insulin analogue Aspart 
was used by an insulin pump in this experiment, as well as 
we applied the HWM to this real patient. Based on our 
abovementioned procedures, the detailed information of the 
identified HWM is shown in Fig. 4. Next, we excited this 
identified HWM to generate sufficient data for the SRNNM 
training. 
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Fig. 4. The results of the HWM identification. 

4.2  Structured RNN model simulation 

In this work, the SRNNM was simulated using the Matlab 
neural network toolbox. For each sub-RNN in this model, we 
employed the feed-forward back-propagation network with 
one hidden layer. The data set which contained three days 
measurements was divided into two parts. The first part 
consisting of two days of the data set was used to identify and 
train the networks (i.e., training set), and the other part called 
validation set contained one day of the data set. In addition, 
the Levenberg-Marquardt algorithm (LM) was used to 
optimize the mean square error (MSE), that is, the 
quantitative measure of the performance.  This LM 
optimization method was selected because the learning rate 
was faster than the classical back-propagation algorithm, and 
the early stopping strategy was adopted for improving 
generalization. Several experiments were conducted with the 
purpose of choosing the appropriate number of neurons in the 
hidden layer. This number in each network was determined 
as 19, 23, 27, 28, 15, and 22, for q3, x1, x2, x3, Q1 and Q2 
respectively, because there was no significant decrease of the 
MSE when we evaluated this error by further varying the 
number of neurons. Finally, we used the data from the HWM 
to train the off-line SRNNM and forecasted the BG levels by 
the on-line recursive prediction.      

4.3  Model prediction results 

The results of the SRNNM for each prediction horizon are 
shown in Fig. 5, and Tables 1 and 2 display the quantification 
of accuracy based on CEG Zone A value, FIT value, MRAD 
value, SSGPE value. As shown in Table 1, for 30-min-ahead 
prediction employed our proposed structured RNN model, 
the overall CEG Zone A value, FIT value, MRAD value and 
SSGPE value are 98%, 72.3%, 4.4% and 6.7% respectively. 
For the longer prediction horizons (2-hr-ahead, 4-hr-ahead), 
the values provided in Table 1 reveal the performances still 
have significant accuracy, for example,  for the 4-hr-ahead 
prediction horizon, the overall CEG Zone A value, FIT value, 
MRAD value, and SSGPE value, are 90%, 58.6%, 5.5%,and 
10.1%, respectively. 

To compare the quantification accuracy of the updated 
prediction results  with the aforementioned results, the 
promising results shown in Table 2 can be seen that there are 
significant improvements for this available measurement 
update scheme applied for our purposed model. For instance, 
for the 30-min-ahead prediction horizon shown in Table 2, 
the overall CEG Zone A value, FIT value, MRAD value, 
SSGPE value are 100%, 80.9%, 2.8%, 4.6%, respectively. In 
summary, those aforementioned results indicate that our 
purposed SRNNM still has significant accuracy even though 
we need to forecast for the longer prediction horizon, as well 
as this model is more accurate when we use new available 
measurements to update predictive BG.    

4.  DISCUSSION AND CONCLUSIONS 

The results derived from this investigation indicate that the 
prediction of BG levels for the patients with T1DM is 
possible. To compare with two relevant research papers, 
firstly, the paper proposed by Bellazzi et al. (1995) is focused 
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on implementation of a mathematical model for the 
simulation of a patient with T1DM, identification using 
neural networks, and performing simulation studies on 
closed-loop control. By contrast, we try to clarify and solve 
the problems for a real patient with T1DM. Secondly, 
Mougiakakou et al. (2005) developed a simulation model but 
validated by the data from invasive finger lacing test instead 
of the CGMS data which can provide maximal information 
about BG levels. Therefore, the authors may neglect the 
masked BG concentrations between two available 
measurements. On the other hand, they only identified and 
validated their model, but didn’t test the performance of 
long-term prediction.    

A structured recurrent neural network model has been 
presented, and this model uses a real patient’s CGMS data for 
identification and validation. By using the HWM to generate 
sufficient data, our developed neural network model can be 
realized. Moreover, there exists an obvious advantage. We 
can use those sufficient data to avoid model overfitting, 
which is an inherent problem in training neural network 
model, for improving generalization. After constructing the   
framework of the model, we test the on-line prediction 
performance of this model for practical purpose.       
Finally, in model prediction results section, the promising 
performance is shown; therefore, we could anticipate the 
improvement of insulin therapies by using our developed 
model in our future works. 
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Fig. 5. The results of prediction by the SRNNM for each prediction horizon. ( ˆ( | ) . . ( )y t t N v s y t− )

Table 1.  Quantification of accuracy for each prediction 
horizon of the structured RNN model without update 

Predictio
n 

horizons 

CEG 

(%) 

FIT 

(%) 

MRAD 

(%) 

SSGPE 

(%) 

30min 98 72.3 4.4 6.7 

2 hr 91 60.1 5.4 9.7 

4 hr 90 58.6 5.5 10.1 

 

 

 

 

 

Table 2.  Quantification of accuracy for each prediction 
horizon of the structured RNN model with update 

Predictio
n 

horizons

CEG 

(%) 

FIT 

(%) 

MRAD 

(%) 

SSGPE 

(%) 

30min 100 80.9 2.8 4.6 

2 hr 93 65.2 5.0 8.4 

4 hr 90 60.1 5.5 9.7 
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Appendix A. HOVORKA-WILLINSKA MODEL 
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= − +  (14) 

 
f

a 2 ID2
a 2 2

I

k S q3dx (t)
k x (t)

dt WV
= − +  (15) 

 
f

3 a3 IE
a3 3

I

dx (t) k S q3
k x (t)

dt WV
= − +  (16) 

max,LD 1a1a
a1* 1a

M,LD 1a

V q (t)dq (t)
ku k q (t)

dt (k q (t))
= − −

+
 (17) 

 max,LD 1b1b
a 2* 1b

M,LD 1b

V q (t)dq (t)
(1 k)u k q (t)

dt (k q (t))
= − − −

+
 (18) 

 2
a1* 1a a1* 2

dq (t)
k q (t) k q (t)

dt
= −  (19) 

 3
a1* 2 a 2* 1b e 3

dq (t)
k q (t) k q (t) k q (t)

dt
= + −  (20) 
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