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Abstract: In this contribution the uncertainties of a biological process model are taken into account
explicitly to calculate optimal process trajectories. For this purpose, the initial condition and the
uncertainties of the model parameters are described by a weighted sum of normal distributions. Such
a so-called Gaussian mixture density (GMD) approximation is propagated through the nonlinear process
model to calculate a second order approximation of the statistical properties of the planed process
trajectory. A Value@Risk primary objective is used to obtain an optimal process design procedure in
presence of uncertainties. In an extensive simulation study a descriptive fermentation process model
is used to compare the classical trajectory planning with the robust design approaches. Here, different
degrees of approximation complexity and the influence of the weighting factor in the Value@Risk dual
objective criterion is investigated.
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1. INTRODUCTION

The design of biological processes is often done heuristi-
cally even though model-based approaches have shown a
much higher potential. However, obtaining a mathematical
description of the cell metabolism is a complex and time
consuming task. Even the simplest organism contains more
than a thousand interacting chemical species which lead
to its complex and highly non-linear dynamic behavior.
For a model-based process design, interactions and in-
tracellular substances are usually lumped together such
that many effects are not resolved in the mathematical
description. Additionally, the measurement situation in bi-
ological processes is very difficult. Not only the evaluation
of the compartments within the cell (DNA, RNA, proteins,
etc.) is error-prone but also the substrate measurements
are usually uncertain because of inhomogeneities in the
fermenter and unknown disturbances in the enzymatic or
chemical analysis methods. Summing up these obstacles,
the parameters of a chosen model structure show signifi-
cant uncertainties. These uncertainties carry over to the
step of process design. Hence, the outcome of the design
has to be associated with a certain probability distribution
which should be accounted for. There are several ways to
estimate the consequences of uncertain parameters and
initial conditions. By calculating the Fisher information
matrix (FIM), known measurement noise can be mapped
to a normally distributed parameter noise according to the
parameter sensitivity of the model [Romero and Navarro
(2009); Heine et al. (2008)]. Using a bootstrap analysis
[Efron (1979)] the parameter noise can also be described
as non-normally distributed. Such a bootstrap result for
the maximal specific growth rate µX ,max of a biological
process is shown exemplary in Fig. 1 as a gray histogram
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scaled to a probability density. When only a single normal
distribution (1-GMD) is used to describe the histogram
of realizations, statistical information is lost due to the
symmetric nature of normal densities. This information
can be preserved using a Gaussian mixture density con-
sisting of four partial densities (4-GMD). Transferring a
set of samples into a Gaussian mixture density is usually
done using the expectation-maximization (EM) algorithm
[Dempster et al. (1977); Bilmes (1998)], which is very
common in image recognition. To use such a description
for process design, Sec. 2 of this contribution, presents
a method for the propagation of normal and non-normal
distributions through a non-linear system via Gaussian
mixture densities based on the unscented transformation
[Julier and Uhlmann (2003); van der Merwe (2004)].

Fig. 1. The parameter distribution from a bootstrap analysis
based on 15.000 samples and its approximation using a
single normal distribution (1-GMD) and a Gaussian mix-
ture density with four components (4-GMD), respectively.
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Sec. 3 shows how the probability information is then
incorporated into a design objective for a biological model
introducing a Value@Risk formulation. In Sec. 4, three
process designs have been calculated. While the first
design ignores the uncertainties and uses the nominal
parameter values only, the second design will consider the
parameter uncertainty as normally distributed. The last
design describes the normally distributed parameters using
an approximation of 27 mixture components. For this
design, it has been investigated, how the process design
changes when the primary objective is focusing more and
more on the process deviations. The paper concludes with
a discussion of the proposed method.

2. PREDICTION OF UNCERTAINTIES

There are several different methods for considering un-
certainties for process design. Some of these concepts are
based on game-theoretic ideas [Chen et al. (1997)], min-
max formulations [Lee and Yu (1997)] also with path-
constraints [Kühl et al. (2007)], H∞-control [Magni et al.
(2001)], or chance constrained programming [Li et al.
(2008)]. In this contribution the propagation of a nor-
mally distributed input x (e.g. parameters and/or initial
condition) through a general non-linear function g(x) (e.g.
primary objective) is calculated in order to reduce devia-
tions in the output of the process. While most methods will
approximate the statistical properties of the propagated
input g(x), a Monte-Carlo simulation enables unbiased
estimates if an infinite number of samples is used. Because
of the huge numerical burden this method is inapplicable
for process design and control even though deterministic
sampling techniques reduce the required samples. By con-
trast, an approximation of first order is a numerically fast
method that linearizes the non-linear function g(x) around
the mean of the input x. The mean y and the covariance
Cy of the output y = g(x) can then be approximated by
mapping the input over the linearized plane

y = g(x) , Cy =
dg
dx

∣∣∣∣∣ x
Cx

·Cx ·
dg
dx

∣∣∣∣∣
T

x
Cx

. (1)

Using a Taylor series expansion of g(x), the derivative
dg/dx in (1) will be calculated around x while a statistical
linearization would also consider the spread of the random
variable Cx which leads to better results. However, this
approximation is only accurate to first order. For a second
order approximation based on the Taylor series expansion
also the second derivative d2g/dx2 is needed. This requires
a numerical effort of at least O(L2

x) where Lx is the number
of uncertain input dimensions. More effective is a statisti-
cal approach, known as the unscented transformation. It
is a second order approximation of which the effort only
grows linearly, requiring 2Lx + 1 function evaluations to
form a parabolic approximation. Its basic idea is to de-
scribe the normally distributed input x via 2Lx +1 discrete
points located on Lx statistically decoupled axis sxi

. These
so-called Sigma-points will then be propagated through
the non-linear model g(x). From the location of these
points a Lx-dimensional paraboloid can be calculated as a
second order approximation of the true unknown solution
g(x). The mean y and covariance Cy of the output y = g(x)
can then be calculated as

y≈
h2−Lx

h2 g(x)+
1

2h2

Lx

∑
i=1

(
g(x + hsxi

)+ g(x−hsxi
)
)

(2)
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1
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(
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)
)
·
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)−g(x−hsxi
)
)T

+
h2−1

4h4

Lx

∑
i=1

(
g(x + hsxi

)+ g(x−hsxi
)−2g(x)

)
·
(
g(x + hsxi

)+ g(x−hsxi
)−2g(x)

)T (3)
with an approximation error of third order. The step size
h can be varied, but as proven in [Nørgaard et al. (1998)]
the smallest approximation error is expected when h =

√
3.

The approximation of y and Cy can be improved when the
input is described by several normal distributions leading
to a weighted superposition of Lx-dimensional paraboloids
for the approximation of the true unknown solution g(x).
The random input x is then approximated with a Gaussian
mixture density (GMD) and can hence be written as

x̃∼
M

∑
j=1

α
( j) N

(
x( j), C( j)

x

)
, (4)

where α( j) is the weight of the jth normal density with
mean x( j) and covariance matrix C( j)

x . Such a description
of the input x based on M normal densities also over-
comes the restriction of the unscented transformation to
normal densities since any arbitrary distribution can be
approximated when a sufficient large number M of normal
densities is used [Yun et al. (2008)]. The output y = g(x)
will then also be described by a GMD with M components
which is referred to as M-GMD. The individual means
y( j) and covariances C( j)

y of the jth partial distribution
are calculated using (2) and (3), while the weight of each
single density α( j) remains constant.

2.1 Decomposing normal distributions into a GMD

As motivated in the introduction, parameter uncertainties
can be identified as non-normally distributed using a boot-
strap analysis. The resulting set of samples can then be
transferred into a Gaussian mixture density using the EM-
algorithm. Even if the system’s uncertainties are normally
distributed, one can benefit from the GMD prediction
by transferring the normal distribution into a Gaussian
mixture density according to (4). Such a decomposition of
a normal density is presented in the following paragraphs.
Even though approximating the normally distributed in-
put x with a sum of normal densities will cause an approxi-
mation error (Fig. 2), the prediction of the higher resolved
GMD-input x̃ related to the non-linear function g(x) will be
improved as shown in the last section of this contribution.
In order to obtain a GMD input x̃ according to (4), the
normally distributed input x will be linearly transformed
to its standard distribution. The variables related to the
standard distribution are indexed with I. Therefore, xI is

x 7→ xI : A−1(x− x)

xI ∼N
(
A−1(x− x), A−1Cx A−T)=N (0, I) . (5)

The unit covariance matrix I will be obtained using the
transformation matrix A =

√
Cx, where

√
Cx can be any

matrix square root. Numerically most efficient would be
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Fig. 2. Top: Standard normal distribution decomposed in a sum
of four normal distributions. The Sigma-points are shown
as black dots on top of the partial densities in order to
show the assignment to their corresponding distribution.
Bottom: Approximation error ∆p(x) = pN (x)−∑

4
i=1 pi(x)

the use of the Cholesky-decomposition, most descriptively
is probably the use of the Eigenvalue-decomposition since
the orthogonal basis is preserved. Anyhow, after the trans-
formation, the desired uncertain variables can be decom-
posed individually according to Fig. 2 because any corre-
lation is resolved. The shown decomposition results from
a least squares optimization on the approximation error
∆p with additional constraints on the deviations σ

( j)
I in

order to prevent wide densities. For all numbers of mixture
components the optimization results, i.e. α( j), x( j)

I and
σ

( j)
I , are stored as a library. The number of decomposing

variables, however, should be chosen carefully since the
number of overall Gaussian distributions is M = ∏

Lx
i=1 mi

if mi is the number of normal distributions along each
uncertain dimension i. After decomposing certain variables
in a reasonable number of univariate distributions, these
components then form a multivariate GMD, such that the
standardized random variable x̃I can be written as

x̃I ∼
M

∑
j=1

α
( j)N

(
x( j)

I , C( j)
I

)
. (6)

The jth partial distribution of the GMD has non-zero
mean x( j)

I and for its covariance matrix C( j)
I 6= I holds.

For the overall GMD density though, xI ≈ 0 and CI ≈ I
is valid depending on the approximation error ∆p(x) of
the decomposition (Fig. 2). Because of the linear nature of
the transformation each partial density can be transformed
individually and hence the random GMD input reads

x̃∼
M

∑
j=1

α
( j)N

(
Ax( j)

I + x, A C( j)
I AT

)
, A=

√
Cx. (7)

2.2 Robust optimization problem

When considering the input of a dynamical system as
being uncertain, the affected process variables will become
random as well. In the previous section it was shown, how
the effects of a random input on the process values can be

estimated. When planning an optimal trajectory for a pro-
duction process, an objective Φ is formulated. Due to the
random nature of the input, i.e. x0 and θ , the formulated
objective Φ = g(x0,θ) will be described by a probability
function. Instead of regarding a particular value, the sta-
tistical properties of this distribution can be optimized.
In (8) the so-called Value@Risk formulation is introduced,
where the mean of the objective Φ is minimized, while
contemporary minimizing its squared confidence interval
σ2

Φ
(e.g. 1σ -interval =̂ 67%) by adding it as a penalty

term. In case that GMDs are used for the uncertainty
prediction the probability density contains information of
higher statistical moments which will be considered for the
numerical calculation of the confidence region. Anyhow,
the importance of the deviation σ2

Φ
towards the mean Φ

of the objective can be adjusted with the factor γ.

U∗ = argmin
U

(
Φ(x0,U,θ)+ γ σ

2
Φ

)
ẋ = f (t,x(t),u(t),θ), x(t0) = x0

0 ≤ u(t)≤ umax, ri (x(t)) + λ σri ≤ 0 (8)
The non-linear model ẋ = f (t,x(t),u(t),θ) depends on
a set of parameters θ as well as on the initial con-
dition x0 and can be manipulated with a profile U =
{u(t0),u(t1), . . . ,u(tk), . . . ,u(tP)} where P is the number of
zero order hold manipulating values in time. The individ-
ual rates uk have to satisfy a certain input constraint umax.
Other non-linear process constraints ri are formulated in
a Value@Risk manner as well in order to consider the
time depending change of the process deviations with
respect to the constraints. The factor λ determines the
safety margin to the actual constraints expressed in 1σ -
confidence distances.

3. ROBUST TRAJECTORY PLANNING FOR A
BIOLOGICAL PRODUCTION PROCESS

The previously described methods will be investigated
using a simple unstructured biological model.

3.1 Unstructured biological model

A typical unstructured model of a biological process can be
derived from balance equations whereas the cell is regarded
as a black box, which produces a certain product depend-
ing on the environmental conditions. Such an unstructured
biological model only consists of four states, the biomass
mX , the mass of available substrate mS, the formed product
mP, and for fed-batch fermentations also the volume of the
reactor V .

ṁX = µX mX

ṁS = (−YXS µX −Ymain−YPS µP)mX + cS, f eed uS

ṁP = µP mX

V̇ = uS (9)

µX = µX ,m
cS

KX + cS

KXI

cP + KXI
, µP = µP,m

cS

KP + cS + 1
KPI

c2
S

The specific growth rate µX will increase when more sub-
strate is available incorporated by the law of Michaelis-
Menten. On the contrary, product formation will induce
an inhibition of growth whereby its rate µX decreases.
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The specific production rate µP will be maximal on a par-
ticular low substrate concentration cS, which is biologically
motivated by the activation of the secondary metabolism
during limitations. The assumed initial condition of the
process is mX = 0.5g, mS = 80g, mP= 0g, and V= 8l, while
the underlying parameters are shown in Tab. (1).

Table 1. Nominal model parameters θ

µX ,m = 0.1 µP,m = 0.01 KX = 1
KXI = 0.1 KP = 0.015 KPI = 0.1
YXS = 5 YPS = 0.2 Ymain = 0.05

3.2 Robust trajectory planning

For the previously described unstructured biological model
three different optimal process designs were calculated to
maximize the amount of product mP at the end of the
fermentation tend = 100 h. Uncertainties were incorporated
by assuming the model parameters θ , shown in Tab. 1,
and the initial biomass mX to be normally distributed,
uncorrelated, with a standard deviation of 5%. Anyhow,
the presented methods are also applicable for an arbitrary
random parameter distribution when approximating it
with a Gaussian mixture density.

The first process design, the nominal trajectory planning
(N-TP), does not consider uncertainties at all but only
nominal values for parameters θ and the initial condition
x0. Hence, the corresponding objective to minimize is
ΦN−T P = −mP(tend). The second design respects the nor-
mally distributed uncertainties using a single multivariate
normal distribution. This trajectory planning is referred to
as 1-GMD-TP. In the third optimal planning, the uncer-
tainties were described as a Gaussian mixture density con-
sisting of 27 multivariate normal distributions (27-GMD).
It was obtained by decomposing the univariate normal dis-
tributions of µX ,m, YPS and Ymain into a sum of 3 normal den-
sities analogously to Fig. 2. All other uncertain parameters
as well as the uncertain initial biomass mX (t = 0) have not
been decomposed but regarded as normally distributed.
In case of the robust trajectories (1-GMD, 27-GMD), the
objective Φ also refers to the negative amount of product
mP at the end of the fermentation tend but regards the
mean product mass mP and its deviation σ2

Φ
according to

the robust objective (8) presented in the previous section
with weighting factor γ = 1. The optimum is searched by
variation of the (zero-order-hold) substrate feeding profile
U, which is restricted to umax = 0.05 l/h. Other non-
linear constraints to be satisfied are the maximal substrate
concentration cS,max = 10 g/l and the maximal reactor
volume Vmax = 9.5 l, which are incorporated in the non-
linear constraint function r according to (8). For a fair
comparison with the nominal design, the factor λ was set
to 0, such that only the mean values ri of the constraint
function r were regarded.

3.3 Optimization results

In the previous section three trajectories, that differ in
the degree of how they respect uncertainties, have been
introduced. The corresponding optimization results are
shown in Fig. 3. The first row shows the nominal trajectory
planning (N-TP), while the second and third row refer to

the 1-GMD-TP and the 27-GMD-TP, respectively. In the
first column the optimal feeding profiles U∗ are illustrated.
According to the exponential growth of the organism, the
substrate feed will likewise increase exponentially through
which the substrate concentration in the fermenter is held
on the upper bound cS,max (not shown). In this phase of
the process, maximal growth is realized throughout all
three designs while no product is formed. Shortly before
the 60th hour of the process, the feeding profile will be
adjusted such that the optimal substrate concentration for
production according to µP is reached. Since the biomass
mX can no longer grow under these conditions the feeding
profile of the N-TP remains constant, only compensating
the loss of substrate due to maintenance and consumption
for product formation. In this phase, the 1-GMD-TP and
the 27-GMD-TP show some slightly different irregularities
in the feeding rate.

The product development over time is shown in the second
column. The dashed line is the predicted mean value of
product concentration. In case of the robust trajectories
also the corresponding 3σ -bounds are illustrated as solid
lines. Since the N-TP does not consider uncertainties
the prediction shows a linear increase of product based
on the maximal production rate µP. However, the real
process underlies minor disturbances and if this feeding
profile is simulated 10.000 times in a Monte-Carlo study
using the assumed normally distributed parameters, the
shaded realizations will be obtained, wherein darker areas
indicate more simulated processes. In most cases, the
uncertainties led to less product, in some cases almost no
product was obtained. The robust trajectories predict a
smaller mean product concentration since they consider
the uncertainties. While the 1-GMD-TP underestimates
the process fluctuations by predicting a rather small 3σ -
confidence region, the 27-GMD-TP is able to describe
asymmetric densities and thus gives a realistic uncertainty
prediction. However, both robust trajectories decrease the
deviations significantly as shown by the 10.000 shaded
realizations. Moreover, the mean values (dashed lines) are
well predicted.

In the last column the Monte-Carlo realizations of the
product concentrations cP(tend) at the end of the process
are illustrated as histograms for the different process de-
signs. The planned amount of product of the N-TP is
marked with a black circle, while the predicted probabil-
ity density is shown for the robust designs. As already
indicated by the shaded realizations, the N-TP shows a
large spread and beyond that a bad prediction of the mean
behavior. By contrast, the 1-GMD-TP is able to give a
good prediction of the mean while the variance is a little
underestimated due to the skewness of the histogram. This
is overcome when using a 27-GMD that is able to describe
such a skew distribution. As a result, the predicted prob-
ability distribution matches the histogram of realizations
almost exactly. However, this is only the case, when the
excitation uS of the process has already led to a somehow
normal distribution of the output. When predicting the
uncertainties of the nominal trajectory (Fig. 3, first row),
for which the process excitation leads to a very non-
normal distribution of the product, the specific 27-GMD
prediction, with only 3 further resolved uncertainties, is
no longer capable of matching the histogram even though
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Fig. 3. Comparison of different optimal trajectories when uncertainties are respected in different degrees, refer to text.

its coarse shape could be described as shown in Fig. 4.
By contrast, the prediction based on a 1-GMD can only
give an approximation of the mean and the variance of
the histogram, while higher order statistical information
is lost due to the nature of the normal density.

3.4 Risk-screening

The robust trajectory plannings (1-GMD-TP, 27-GMD-
TP) from the previous section are based on an objective
function that also accounts for the spread of the objective
using the squared 1σ -confidence distance (8). This risk
term σ2

Φ
has to be weighted towards the mean value Φ

of the scalar objective function Φ with the risk factor
γ. The results from the previous section were obtained
using γ = 1. The influence of this weighting factor on the

Fig. 4. Prediction of the product concentration when the nom-
inal trajectory is simulated considering the uncertainties
with a 1-GMD and a specific 27-GMD, respectively.

optimization result will be investigated in the following
paragraphs based on the 27-GMD-TP.

Fig. 5 shows the optimal substrate feeding profiles U∗(γ)
of the 27-GMD-TP when the risk factor γ is increased
beginning from γ = 0 in black at the very back of the plot.
Even without respecting the risk by using γ = 0 the optimal
feeding profile U∗ shows irregularities during the constant
feeding phase since the asymmetrical predicted density of
the 27-GMD affects the predicted mean of the objective
function Φ. These irregularities will become slightly more
intense with increasing risk factor γ. From risk factor γ = 3
onwards, the scattered irregularities begin to merge into
larger valleys.

Corresponding to these feeding profiles, Fig. 5 also illus-
trates the course of the mean product mass mP (gray
dotted lines) as well as the upper and lower 3σ -confidence
bound as a gray scaled frame around the mean. Starting
from γ = 0 in black, it is evident that an increase of γ

will quickly lead to a smaller spread, while the mean value
mP is almost not affected. Only when the risk factor γ is
increased above 3 the mean value starts to drop while the
risk does not decrease significantly anymore.

This relation is shown more clearly in Fig. 6, which
illustrates the 1σ -interval of the objective Φ over its mean
value Φ based on different weighting factors γ attached
to the points. The optimization results of the 1-GMD-
TP are illustrated with asterix, those of the 27-GMD
trajectory are shown as black dots. The pareto front of
the 1-GMD-TP shows higher mean values Φ than the one
of the 27-GMD design throughout all risk factors γ. This is
caused by the asymmetric density of the objective function
which cannot, however, be described properly with one
normal distribution, only. Hence, the 1-GMD constantly
overestimates the output of the process. Moreover, the
two pareto fronts illustrate, how to choose the risk factor γ
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Fig. 5. Left: Optimal feeding profiles U∗ of the 27-GMD trajectory when different weights γ for the risk term σ2
Φ

in the objective
function Φ are used. Right: Product history of the 27-GMD trajectory corresponding to the feeding profiles. The gray dotted
lines refer to the mean of the product mass mP while the gray scaled frames indicate the 3σ -confidence bound over time.

Fig. 6. Pareto front of the optimal results for different weights
of the risk γ . The optimal results for the 1-GMD are shown
using (∗) asterix. Those of the 27-GMD by (·) dots

according to the given requirements. For instance, even if a
high mean value of product is highly preferred, it will make
sense to choose γ = 0.1 instead of γ = 0 because the spread
can be reduced by about 20% while the loss of mean value
is only about 1% regarding the 27-GMD trajectory. On
the other side, when reproduceability is highly preferred,
γ = 3 would be a reasonable choice, since a further increse
of γ costs a lot of mean value while only reducing the risk
very modestly.

4. CONCLUSION

The different feeding profiles obtained from different de-
grees of uncertainty consideration (none, normally dis-
tributed, Gaussian mixture densities) are very similar and
yet have a big impact on the deviation of the process out-
put. The uncertainty description based on Gaussian mix-
ture densities gives a detailed insight into the uncertainty
propagation throughout the process which is essential for
finding robust feeding strategies. For that reason, a process
design using Gaussian mixture densities is very promising
especially for biological systems that are strongly non-
linear and contain many uncertain parameters.
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