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Abstract: Process Analytical Technologies (PAT) are increasingly being explored and adopted by 
pharma-chem and bio-pharma companies for enhanced process understanding, Quality by Design (QbD) 
and Real-time-Release (RTR). To achieve these aspirations there is a critical need to extract the most 
information, and hence understanding, from complex and often very ‘messy’ spectroscopic data. A number 
of new approaches will be shown to overcome the limitations of existing calibration/modelling 
methodologies and algorithms and their use in some industrial applications will be presented. 
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1. INTRODUCTION 
 
In 2004 the FDA published its Process Analytical Technology 
(PAT) guidance and the its cGMPs for the 21st Century which 
calls for the design of effective and efficient manufacturing 
processes to assure product quality and performance; product 
specifications based on a mechanistic understanding of how 
different formulations and processes affect product 
performance and continuous real-time assurance of quality 
and European Medicines Agency (EMEA) published its Road 
Map to 2010 ‘Preparing the Ground for the Future’. These 
publications released the potential for significant changes in 
the development and manufacturing of pharmaceuticals.  
Folestad (1999) stated that “PAT is a system for designing, 
analyzing, and controlling manufacturing through timely 
measurements (i.e., during processing) of critical quality and 
performance attributes of raw and in-process materials and 
processes with the goal of ensuring final product quality. QbD 
is “a systematic approach to development that begins with 
predefined objectives and emphasizes product and process 
understanding based on sound science and quality risk 
management (definition in ICH Q8R, Annex to ICH Q8: 
’Pharmaceutical Development). Design Space: The 
multidimensional combination and interaction of input 
variables (e.g., material attributes) and process parameters that 
have been demonstrated to provide assurance of quality. 
Working within the design space is not considered as a change 
(definition in ICH Q8: ’Pharmaceutical Development). Quality: 
The suitability of either a drug substance or drug product for 
its intended use. This term includes such attributes as the 
identity, strength, and purity. Real-Time-Release: A system 
which ensures that a product is of the intended quality, while 
reducing or (in some cases) making end-product testing 
redundant, by utilising an appropriate combination of the 
following: formulation design, process design, process 
validation, qualification of raw materials, and in-line/at-line 
control of key process parameters; at-line/in-line  
measurement of appropriate product attributes, and  
 

 
compliance with specific cGMP requirements (EFPIA, 2002); 
Ability to evaluate and assure acceptable quality of finished 
product based on process data, typically a valid combination 
of material attributes and process controls (process 
parameters) (FDA, PAT Guidance 2004 Real-time quality control, 
leading to a reduction of end-product release testing, ICH Q8)”. 
 
It is interesting to observe that the industry has always used 
QbD to some extent to design and build quality into product 
and manufacturing process quality - don’t test for quality 
(Edwards Deming); monitor and improve processes to reduce 
variability; and use quality risk management to focus 
resources into areas critical to the patient. This approach 
aligns with continual process improvement (e.g. lean six 
sigma); and enhanced innovation by reducing regulatory 
burden associated with changes. Although presently under 
current review by the American Society for Testing and 
Materials (ASTM) committee E55 (Manufacture of 
Pharmaceutical Products) there is no standard PAT instrument 
verification system in place, although there are numerous 
currently non-standard techniques available. This paper 
considers the development and application of recent 
multivariate methods to verify the integrity of the PAT 
“system”, including sensor, calibration model, and fault 
diagnostics. Of particular interest in meeting these challenges 
is the on-line real-time use of process analytics (e.g. 
spectroscopic instrumentation) for process monitoring and 
control applications.  These drive the need to incorporate and 
integrate the detailed spectral information into process 
performance monitoring and predictive control schemes for 
real-time-release.  
 
In other process industries, on-line real-time spectroscopic 
technologies such as near infrared, mid infrared, UV-Vis, 
Raman, X-ray diffraction, etc., have been widely applied but 
to a lesser extent in pharmaceuticals and virtually none in 
closed process control and optimisation. Although a number 
of methodologies are available for addressing, in one way or 
another, such challenges, much more needs to be done. 
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Compounding these issues is the need for transferable and fit-
for-purpose (across scales and equipment differences) 
spectroscopic calibration models for in on-line/in-line 
monitoring – still a major concern today. Two new methods, a 
modified Loading Space Standardization (LSS) algorithm and 
Systematic Prediction Error Correction (SPEC), have been 
developed to maintain the predictive abilities of multivariate 
calibration models when e.g. the spectrometer or 
measurement conditions change. The performance of the 
methods has been evaluated on two NIR data sets (one with 
changes in instrumental responses, the other with temperature 
induced spectral variations) and compared with that of two 
commonly used methods - Direct Standardization (DS) and 
Piecewise Direct Standardization (PDS).  

2. TEMPRATURE INDUCED SPECTRAL VARIATIONS  
 
When spectral measurements are subject to such changes and 
variations, methods for calibration model maintenance (e.g. 
Forina et al, 1995; Feudale et al, 2002; Bouveresse, et al, 
1995; Despagne, et al, 1998) are needed to prevent 
degradation in the accuracy and reliability of multivariate 
calibration models and avoid time-consuming full 
recalibration procedures. Calibration model maintenance 
methods can be roughly classified into three categories, i.e. 
calibration model coefficients updating methods (e.g. 
Bouveresse et al, 1996; Greensill et al, 2001) prediction 
correction methods (e.g. Bouveresse, et al, 1994) and spectral 
responses standardization methods (Bouveresse et al, 1995; 
Despagne et al, 1998).  For complex situations, spectral 
responses standardization methods are generally accepted to 
be more suitable than prediction correction methods. The idea 
of spectral responses standardization is to find a 
transformation matrix, which transforms the spectra of future 
test samples into the corresponding spectra as if they were 
measured under the same conditions or on the same 
instrument as the calibration samples used to build the 
original calibration model. Therefore, the original calibration 
model can be used for prediction without having to update the 
model coefficients. The transformation matrix can be obtained 
by regressing the spectra of a subset of samples (often called 
standardization samples) measured on the primary instrument 
(or initial calibration conditions) against the spectra of the 
same subset measured on the secondary instrument (or under 
the modified test conditions). Direct Standardization (DS), 
which directly relates the response of a sample measured with 
one instrument to its response obtained on another instrument, 
e.g. Wang, Veltkamp and Kowalski, 1991; and Piecewise 
Direct Standardization (PDS), e.g. Wang et al, 1991; Wang & 
Kowalski, 1993; Wang, Dean and Kowalski, 1995; are well-
established methods for the correction of complex nonlinear 
spectral variations between measurements. However, the main 
limitation of these methods is the inability to handle the 
continuous nature of temperature. To overcome this 
limitation, PDS was generalized to continuous variables - 
continuous piecewise direct standardization (Wűlfert et al, 
2000; Wülfert, et al., 2000a,b; Barring et al, 2001). Both DS 
and PDS can handle complex situations due to their 
multivariate character. The main drawback of DS is the over-
fitting problem resulting from the fact that the number of 

standardization samples is much smaller than the number of 
variables (e.g. wavelengths). So the transformation matrix is 
typically estimated by means of PCA and PLS. PDS adopts 
the same linear model as DS does. PDS differs from DS only 
in the way that the transformation matrix is computed. In 
PDS, the transformation matrix is estimated by the moving 
window procedure, which can to some extent alleviate the 
over-fitting problem and also enable better modeling of 
possible non-linearity’s. However, the use of the moving 
window procedure also compounds a practical drawback of 
PDS, viz. a relatively long computation time owing to the 
numerous local multivariate regression models. Also, the 
window size has a significant effect on the performance of 
PDS and needs to be carefully determined. Moreover, poor 
estimation of the local rank of each local multivariate 
regression model may lead to discontinuities in the PDS 
transformed spectra (Gemperline et al, 1996; Chen, Morris 
and Martin, 2005). Furthermore, with PDS, the spectra of the 
standardization samples must be measured on both 
instruments or under both sets of measurement conditions, 
which makes the procedure inapplicable to on-line/in-line 
monitoring of chemical and bio-chemical processes where 
such a requirement is difficult to satisfy in practice. Due to the 
various theoretical and practical limitations of the existing 
calibration model maintenance methods, there is still a need 
for methods that are easier to implement (i.e. require fewer or 
even no meta-parameters) and at the same time provide better 
performance. In this paper, two new methods for calibration 
model maintenance are described and their performance 
compared to that of DS and PDS using industrial NIR data. 

3. THEORY 
 

Suppose a multivariate calibration model,  has been 
established on the spectra of a set of calibration samples 
measured at the selected calibration conditions or on the 
primary instrument (x and y represent the spectrum of a 
sample and the concentration of the target constituent in the 
sample, respectively). The task is now to enable the 
calibration model to give correct quantitative predictions for 
the target constituent in test samples, based on their spectra 
measured at the test conditions or on a secondary instrument. 

)(f x=y

 
3.1 Loading Space Standardization (LSS) 
Assume the rows of spectral matrices X1 and X2 are the 
corresponding spectra of the same subset of standardization 
samples measured at the calibration and test conditions (or on 
the primary and secondary instruments), respectively. 
According to Beer-Lambert law, X1 and X2 can be 
decomposed as follows: 

1
T
11 ECSX += ;  2

T
22 ECSX += (1) 

Where, C is the concentration matrix with its ith row 
representing the concentrations of all the chemical 
components in the ith standardization sample. S1 and S2 are 
pure spectral matrices, whose columns are the pure spectra of 
chemical components in the standardization samples at the 
calibration and test conditions (or on the primary and 
secondary instruments), respectively. E1 and E2 denote the 
corresponding residual matrices.  If S1 and S2 are known a 
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priori, for a test sample, its spectrum (xtest) measured at the 
test conditions (or on the secondary instrument) can be easily 
transformed into spectrum (xtrans) as if it were measured at the 
calibration conditions (or on the primary instrument) through 
the simple calculations in (2). The multivariate calibration 
model built at the calibration conditions (or on the primary 
instrument) can then be used to predict the concentration of 
the target constituent in the test sample from the transformed 
spectrum. 

T
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T
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T
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T
2 )()( SSxxSSxx ++ −+= testtesttesttrans  (2) 

where, ‘+’ symbolizes the Moore–Penrose generalized 
inverse.  In most cases, it is difficult, if not impossible, to 
obtain S1 and S2. Since matrix R is full rank the following 
equations hold (Chen et al, 2005).  
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Therefore,  and  in (2) can be replaced by 

and , respectively, which are readily obtained by 
singular value decomposition of X
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(5) 

Subscripts ‘s’ and ‘n’ signify that the corresponding factors 
represent spectral information and noise, respectively. Now, 
partition  into two sub-matrices  and  

( ), which have the same sizes as  and , 

respectively. Since , it can 
be shown that there exists a full rank matrix R satisfying the 
following equations: 
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Combining (2), (3), (4) and (6), gives: 
T
2

T
2

T
1

T
2 )()( PPxxPPxx ++ −+= testtesttesttrans  (7) 

The above transformation method is a special case of the 
loading space standardization method developed by the 
authors (2005). For convenience, it is also referred to as 
Loading Space Standardization (LSS) throughout this paper. 
 
3.2 Systematic Prediction Error Correction (SPEC) 
The applicability of LSS lies in the availability of the spectra 
of a subset   of standardization samples recorded at both the 
calibration and test conditions (or on both the primary and 
secondary instruments). However, such a requirement is 
difficult to satisfy in the area of on-line/in-line monitoring of 
chemical and bio-chemical processes. In such applications, it 
is relatively easier to measure the spectra of a subset   of 
standardization samples at the test conditions (or on the 
secondary instrument) and the concentrations of the target 
constitute in the standardization samples through off-line 
assay. This section focuses on how to maintain multivariate 
linear calibration models under this circumstance.  
 
Suppose X2 is the spectral matrix of a subset of 
standardization samples measured at the test conditions or on 

the secondary instrument, and y2 is a vector containing the 
concentrations of the target constituent in the standardization 
samples. For a multivariate linear calibration model, 

xb1x +== ay )(f  (where 1 is a column vector with its 
elements equal to unity), the concentrations of the target 
constitute in the standardization samples can be predicted 
from their corresponding LSS transformed spectrum (Xtrans). 
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If we define  and , equation 8 
can be rewritten as
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obtaining ,  and  can be replaced by yβ 2ŷ 2T 2 and 2,sT  
(estimated through the singular value decomposition of X2 in 
(9)), respectively. 
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(9) 

Therefore, . For a test sample, the 
concentration of the target constituent can then be directly 
calculated from its spectrum (x

)](f[ 222, XyTβ −= +
s

test) measured at the test 
conditions or on the secondary instrument without spectral 
transformation.  

2,stesttest Pxt = , βtx testtesttesty += )(f  (10) 

In 10, the term can be regarded as the systematic 
prediction error of the multivariate linear calibration model 
caused by the spectral differences resulting from the 
variations in measurement conditions or changes in 
instrument. This is why the above method for calibration 
model maintenance is called Systematic Prediction Error 
Correction (SPEC). 

βt test

4. APPLICATION 
 

The data consisted of 1308 spectra of 654 pharmaceutical 
tablets measured on two NIR spectrometers in the 
transmittance mode from 600 to 1898 nm in 2 nm increments. 
Each individual tablet was subsequently analyzed for assay 
value of the active ingredient, tablet weight, and tablet 
hardness. For each of the 1308 absorbance spectra, the 520 
absorbance values in the range between 600 and 1638 nm 
were used for the subsequent data analysis. Absorbance 
spectra from each instrument were split into a calibration set 
(155 spectra), a test set (459 spectra) and a validation set (40 
spectra). The calibration set includes tablets with a wide range 
of assay values (151.6~239.1 mg) for developing calibration 
model. The challenge for this data set is to develop a 
multivariate linear calibration model for the assay value of the 
active ingredient on one instrument (the primary instrument), 
and then to provide the best means of transferring the 
calibration model to the secondary instrument. 
Transformation matrices for both DS and PDS were estimated 
by PLS from the raw absorbance spectra of the 
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standardization samples. Singular value decomposition of 
both LSS and SPEC were also carried out on the raw spectra.  
The root-mean-square error of prediction (RMSEP) is used as 
the performance criterion. 

5. RESULTS AND DISCUSSION 
 

Although the spectra of the same sample measured using two 
different instruments of the same type may have the same 
basic shape or profile, subtle differences in instrumental 
response functions can result in perceptible spectral 
variations. This is illustrated in Figure 1, where significant 
spectral variations can be observed in the region between 600 
and 720 nm; there are also subtle spectral differences in other 
regions. These spectral variations can cause large systematic 
prediction errors when the calibration model built on the 
primary instrument is applied to the spectra measured on the 
secondary instrument. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Spectra of the tablet obtained with the primary 
(red dotted line) and secondary instrument (blue solid line) 
 
As shown in Figure 2, the differences in instrumental 
responses resulted in significant offsets in the predictions of 
the PLS calibration model. Besides affecting accuracy, the 
change in instrument also degraded the predictive precision of 
the calibration model, which signifies the spectral variations 
introduced by instrumental differences are not systematic for 
all samples, but rather differ from sample to sample. So, for 
the pharmaceutical tablet data, multivariate model 
maintenance methods rather than univariate methods (such as 
SBC) are needed. 
 
Four methods (LSS, SPEC, PDS and DS) were used to 
evaluate the potential elimination of the detrimental effects of 
instrumental/temperature changes with a view to maintaining 
the predictive abilities of the calibration models. Before the 
application of these methods, the influence of some model 
parameters, i.e. the number of standardization samples, the 
number of principal components and the window size 
(exclusively for PDS) on their performances was investigated. 
In order to obtain reliable results, the number of 
standardization samples should be at least equal to the number 
of actual chemical and (or) physical variation sources in the 
calibration spectra. The larger the number of standardization 
samples, the higher the probability that good results will be 

obtained. However, more standardization samples require 
increased analysis time and effort, with associated higher 
costs. Therefore, the calibration maintenance method that 
achieves satisfactory results with fewer standardization 
samples is preferred in practice.  
 
The effects of the number of standardization samples from the 
pharmaceutical tablet data, on the performances of the four 
calibration maintenance methods (LSS, SPEC, PDS and DS) 
are shown in Figure 3. It is observed that increasing the 
number of standardization samples does not significantly 
reduce the RMSEP values for the DS, PDS and LSS methods 
or for SPEC with 6 or more samples. The main observation is 
that a lower value of RMSEP was obtained with SPEC or LSS 
compared to the values for DS and PDS. In PDS and DS, the 
number of principal components (PCs) is used in the 
calculation of the transformation matrices; while in LSS and 
SPEC, they are related to the determination of the number of 
factors representing spectral information after singular value 
decomposition. 
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Figure 2. Concentrations of active ingredient in test 
pharmaceutical tablet samples predicted from their spectra 
measured with the primary (red cross) and secondary 
instruments (blue circle) using a PLS calibration model 
with eleven principal components built from calibration 
spectra obtained using the primary instrument.  

  
Theoretically, the number of PCs used in all four methods 
should not be less than the number of chemical components in 
the system under study. Studies have shown that once the 
number of PCs is larger than a certain value, a further increase 
has little effect on the performance of PDS and DS in terms of 
the RMSEP. Similarly, with SPEC there is only a slight 
decrease in the RMSEP when the number of PCs is increased 
from 4 to 12. For LSS, the effect of the number of PCs is 
different: the RMSEP is similar for 4 to 9 PCs and then 
increases for 10 to 12 PCs. As a rule of thumb, when the 
number of standardization samples is small, the number of 
PCs used in LSS and SPEC can be set to a value equal to the 
number of standardization samples.  The ‘window size’ 
parameter (Nws) is only relevant to the PDS method and is one 
of its weaknesses, e.g. for the pharmaceutical tablet data the 
RMSEP value varied from 4 to 9 in an unsystematic manner 
when the window size was changed and is one of the practical 
problems of PDS.  
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Figure 3. Active ingredient RMSEP values predicted 
calculated from spectra recorded on the secondary 
instrument. Effects of number of standardization samples 
on the performance of the four calibration maintenance 
methods (green circle-SPEC; red triangle-PDS; orange 
square-global PLS; blue diamond-SBC). 

 
Table 1 lists the RMSEP values (mg) for the active ingredient 
concentrations in pharmaceutical tablet samples predicted by 
different models from their spectra measured on the secondary 
instrument. Without model maintenance, the PLS calibration 
model, PLS1 denotes the PLS calibration model built using the 
spectra of the calibration samples recorded with the primary 
instrument. PLSsub denotes the PLS calibration model built 
using the spectra of six standardization samples recorded with 
the secondary instrument. PLSglobal signifies the global PLS 
model built using the spectra of the calibration samples 
recorded with the primary instrument and the six 
standardization samples recorded with the secondary 
instrument.PLS2 represents the PLS calibration model built 
using the spectra of the calibration samples recorded with the 
secondary instrument. 
 
The RMSEP value for the entire pharmaceutical tablet data set 
is as high as 22.7 which is equivalent to an average relative 
predictive error of 11.7% (not shown). The PLS model 
(PLSsub) built on the spectra of six standardization samples 
measured on the secondary instrument provided concentration 
predictions with substantially lower RMSEP values. However, 
compared with the fully recalibrated PLS2 model, the 
predictive errors of PLSsub are still moderately high. The 
application of calibration model maintenance methods with 
six standardization samples further reduced the predictive 
errors. Among the four calibration model maintenance 
methods, LSS (Npc: 6) achieved the best results with RMSEP 
values favorably comparable to those of the fully recalibrated 
PLS2 model. Though SPEC (Npc: 6) requires less information 
than the other three methods, its performance is second only 
to that of LSS. The results of PDS (Npc: 6, Nws: 27) and DS 
(Npc: 4) are quite similar. For this particular data set, the 
application of the time-consuming moving window technique 
in PDS brought no extra benefits to the final results. The two 
methods of calibration model maintenance, LSS and SPEC, 
gave significantly lower RMSEP values than DS and PDS 
when evaluated the tablet data, and which was reflected in 

another application to ternary data (not presented due to space 
restrictions), even when fewer standardization samples were 
used.    
 
Although LSS appeared to be superior in maintaining the 
predictive ability of the PLS models when affected by 
changes in instrument or measurement conditions, the 
performance of SPEC was good considering that the method 
only requires the concentrations of the target constituent in the 
standardization samples and the corresponding spectra 
measured at the test conditions, or on the secondary 
instrument. Consequently, SPEC appears to have a wider 
applicability than other standardization methods that need the 
spectra of the standardization samples to be measured under 
both the calibration and test conditions, or on both the primary 
and secondary instruments. 
 

Table 1. RMSEP Values (mg) 

 Models Calibration 
Set 

Test 
Set 

Validation 
Set 

Entire 
Set 

PLS1 23.6 22.5 22.1 22.7 
PLSsub 8.4 6.6 6.4 7.0 

SBC-PLS1 5.7 6.6 7.6 6.5 
PLSglobal 3.6 4.1 6.1 4.2 

PDS-PLS1 3.4 3.2 6.7 3.6 
SPEC-PLS1 3.6 3.1 5.3 3.4 

PLS2 2.4 2.7 5.2 2.8 

6. PAT IN CLOSED LOOP PROCESS CONTROL 
 

With the increasing interest in real time product release based 
on process analytical and closed loop control technologies 
there is a critical need for robust data verification, particularly 
as this information is being included in real-time control or at 
least advisory feedback applications. PAT is driving a 
paradigm shit across the pharmaceuticals and bio-pharma 
from a fixed process (variable quality) approach to a new 
variable process (consistent high quality) approach, signalling 
the replacement of traditional (lab-centric) production 
methods to adaptive and flexible production systems that rely 
on the employment of advanced on-line measurements, 
advanced control and continuous production process 
optimization. 
 
Critically, maintaining PAT device integrity in a regulated 
environment involves the management of real time data, 
including pre-processing, outlier detection, outlier isolation 
and record of uncertainty associated with data is vital in a 
validated environment, to ensure complete traceability of all 
actions deployed by either a closed loop control system or 
operator. This management housekeeping, underpins the 
credibility for any software used for PAT and “Real Time” 
applications. This is an area that has been considered in depth 
for safety critical systems, for instance, in the Nuclear 
Industry, and one that again emphasizes a Process Systems 
Engineering approach. There is an ongoing development of 
new ASTM standards (E55) that relate to the Manufacture of 
Pharmaceutical Products and are forming a detailed practical 
framework for deployment and management of PAT devices 
in Pharmaceutical applications. There are existing standards 
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that include ASTM D6299-09 and D6122-09 that provide a 
suitable framework for continuous monitoring of analytical 
instruments in other industries; it is noted, however, that these 
standards do not employ the multivariate techniques that 
provide improved fault detection and signal reconstruction 
capabilities; clearly a major gap.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Real-time data management for quality control  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Real Time quality control with spectral data 

 
Major challenges are involved in taking PAT into closed loop 
process control for Real-time-Release. What data quality 
monitoring approaches are needed to strengthen the integrity 
and robustness of on-line models? How will Critical-to-
Quality parameters be measured – Continuously, or a-
periodically, or in real time inferred from calibration model, 
or from an end-point value inferred from calibration model; or 
can the scores of a calibration model be interpreted in terms of 
Q-to-Q parameters?; how will real time data be managed 
including pre-processing, outlier detection and isolation, the 
recording of uncertainty associated with monitored data to 
ensure complete traceability of all actions deployed by either 
a closed loop control system or by an operator – all within a 
validated environment? Real-time management of process and 
spectroscopic data, Figure 4 including robust fit-for-purpose 
‘transferable’ calibration models raise questions such as what 
will be the impact of controlling temperature using 
spectroscopic data on control loop performance?; what are the 
important parts of the spectrum that need to be controlled for 
reaction monitoring?  Such procedures will be essential to 
underpin the credibility for any algorithms and software used 
for PAT applications and Real time Release.  PAT is part of a 
tool box to optimise the way pharmaceuticals and biologicals 
are manufactured, providing greater understanding of the 
processes involved and what to control, and providing a 
means to control critical attributes by monitoring and 

adjusting critical parameters in real time.  Figure 5 shows a 
schematically an industrial application to PAT based control 
and its relationship to the design and process control space 
(courtesy Perceptive Engineering).  
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