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Abstract: Biobutanol has a potential application as a biofuel and can replace gasoline as an alternative fuel. 
However, the productivity of the biobutanol process has to be increased significantly, before it can be 
commercialized. Clostridium acetobutylicum has been the primary microbial host used for biobutanol 
production. Consequently, systems biology based genome-scale metabolic model of C. acetobutylicum 
metabolism is essential to optimize the biobutanol production rate via genetic and process optimization 
and metabolic engineering. An updated genome-scale metabolic model of C. acetobutylicum ATCC824 
consists of 700 genes, 709 reactions, 29 exchange reactions, and 679 metabolites, which covers 16.3% of 
ORFs and is more comprehensive compared to two other existing models. This metabolic network was 
used as a platform for simulating phenotypes using the constraint-based modeling approach. Flux 
variability analysis shows the presence of alternate carbon and electron sinks that allows for different 
carbon assimilation patterns and ranges of product formation rates. Incorporation of metabolomics and 
thermodynamics data into this model results in thermodynamically feasible flux distributions. We apply an 
NMR based approach to quantify 31 intracellular metabolites in both metabolic phases. The total molar 
concentration of metabolites was approximately 245mM, where asparagine was the most dominant 
metabolite. 
 Keywords: Clostridium acetobutylicum, genome-scale metabolic model, butanol, FBA, FVA, TMFA. 

 

1. INTRODUCTION 

Clostridium acetobutylicum is a Gram-positive, solvent 
producing, anaerobic bacterium which is able to convert a 
variety of sugars to organic acids and solvents. In a typical 
fermentation of this bacterium two distinct phases are 
observed; in the acidogenic phase, the bacterium grows 
rapidly and produces acetate, butyrate, and hydrogen, whereas 
in the stationary growth phase the metabolic shift to 
solventogenesis takes place (Jones et al., 1986). Several 
studies have been conducted to increase the solvent yield; The 
ClosTron, a gene knockout system for the genus clostridia has 
been developed that facilitates further functional genomics 
studies (Heap et al., 2007), and genome wide transcriptome 
studies on this species have been performed (Alsaker et al., 
2005). Therefore, systems biology approach that allows the 
integration of these genome-scale data and the improvement 
of C. acetobutylicum metabolic activity provides a promising 
method for optimizing the biobutanol production process. 
System-level quantitative analysis of cellular metabolism 
using in silico modeling approaches facilitates the generation 
of new knowledge, via iterative modification of in silico 
models and experimental designs. This knowledge can be 
applied for designing strains with improved metabolic 
activities for industrial applications (Lee et al., 2005). 

 Flux balance analysis (FBA) has been applied for analysis 
and quantitative prediction of phenotypic behaviours of 
various microorganisms across different biological domains. 
More recently the FBA has been extended to include genome-
scale thermodynamics and metabolomics data (Wang et al., 
2005, Henry et al., 2007, Zamboni et al., 2008) in order to 
refine the metabolic models and shed light on various aspects 
of the metabolism. 
Lee et al., has reconstructed a genome-scale metabolic model 
of C. acetobutylicum with 11.2% ORF coverage, and applied 
this model to predict the metabolic behaviours in acidogenic 
and solventogenic phases using FBA (Lee et al., 2008). 
Senger et al., has also presented another genome-scale 
metabolic model of C. acetobutylicum with 12.6% ORF 
coverage, and applied genetic algorithm to derive a constraint 
based on the specific proton flux state to further restrict the 
solution space in FBA, and predict the pH of the batch culture 
during the acidogenic phase (Senger et al., 2008 a,b).  
However, these models do not incorporate thermodynamics 
and metabolomics data analyses. These additional constraints 
can be applied to further limit the solution space. In this 
study, an expanded genome-scale metabolic model of          C. 
acetobutylicum is presented. We applied thermodynamics-
based metabolic flux analysis (Henry et al., 2007), to obtain 
thermodynamically feasible flux distributions, along with 
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metabolomics data analysis to study the metabolism of           
C. acetobutylicum.  

2. METHODS 

2.1 C. acetobutylicum Metabolic Network Reconstruction 

The MetaFluxNet® ,version 1.82 was the platform used for the 
model reconstruction (http://mbel.kaist.ac.kr/lab/mfn/),  and 
the reconstructed network model was then exported to a 
Systems Biology Markup Language model (SBML; 
http://sbml.org), for further analyses using COBRA toolbox 
(Becker et al., 2007) in MATLAB environment (The 
MathWorks™). The automated annotated genome sequence 
of C. acetobutylicum ATCC824 was downloaded from TIGR-
CMR database (http://www.tigr.org/) and was used as a 
framework for GPR assignments.  
The 4.13Mb-length genome sequence of ATCC824 (Nolling 
et al., 2001) comprises 4273 ORFs, and the GPR assignments 
were mostly based on this genome annotation; in addition the 
automated metabolic network of ATCC824, reconstructed 
using Pathway Tools software version 11.5 and MetaCyc 
version 11.1 (http://biocyc.org/biocyc-pgdb-list.shtml), were 
used for confirmation of GPR assignments or re-annotations 
after manual inspection. The model was reconstructed 
manually on the metabolic roles in the existing annotation, 
and biochemical databases such as KEGG 
(http://www.genome.jp/kegg/) and the enzyme nomenclature 
database were consulted for more information on pathways, 
metabolites, and enzymes (http://ca.expasy.org/enzyme/).  
The elementally and charge balanced reaction equations were 
mostly obtained from BIGG database (http://bigg.ucsd.edu/) 
and SimPheny™ database (Genomatica Inc. San Diego. CA); 
furthermore, the chemical composition and charge of some 
particular metabolites, which did not exist in the 
aforementioned databases, were determined using ACD/LogD 
Sol Suite version 11.0 (http://www.acdlabs.com/) at the 
physiological pH of 6.7, which is consistent with the 
intracellular pH of C. acetobutylicum (Jones et al., 1986). 
Transport reactions were included in the network according to 
the transport protein information in KEGG and TransportDB 
(http://www.membranetransport.org/) databases as well as the 
available physiological data. 
Pathway completion and gap filling were done manually so 
that the network produces ATP along with all biomass 
building blocks, including amino acids, solute pool, 
nucleotides, cofactors, lipids and polysaccharides, from 
available substrates in a defined growth medium (Monot et 
al., 1982). The BLAST search using UniProt Blast tool 
(http://www.uniprot.org/) was applied to assign predicted 
functions to some missing ORFs in the original annotation as 
well as some ORF re-annotations. The GPR assignments also 
were done using available literature data. Further network 
evaluation and pathway completion were done using 
computational analyses (FBA) of the network using COBRA 
toolbox; however, network gaps in some poorly characterized 
pathways can exist even after performing the network 
evaluation step. 
Non-gene associated reactions were added in order to fill the 
gaps or to meet the physiological requirements according to 
the available literature data. The biomass macromolecular 
composition was assumed to be identical to the Bacillus 

subtilis (Lee et al., 2008, Oh et al., 2007), where the 
composition of nucleotides, protein, lipids and trace elements 
as well as the required polymerization energy were adapted 
from the model developed by Lee et al. The biomass synthesis 
equation, which includes 40 mmol ATP per gram DCW per 
hour as the growth associated maintenance energy (GAM) 
(Lee et al., 2008, Senger et al., 2008a), was included in the 
network as a demand reaction. 

2.2 Flux Balance Analysis (FBA) and Flux Variability 
Analysis (FVA) 

Metabolic phenotypes can be characterized as the metabolic 
flux distributions through the metabolic network derived 
using mathematical modelling approaches (Edwards et al., 
2002). The flux balance analysis (FBA) is based on the mass 
conservation law for each metabolite in the network. Vallino 
et al. (1993) have shown that the steady-state approximation 
of the metabolite concentrations is a valid approximation, 
where due to the intracellular metabolite concentrations and 
rapid metabolic fluxes, the metabolic transients are very fast 
in comparison to the time constants of the cell growth.  

In FBA, the constraints are defined by the stoichiometry of 
metabolic reactions, and flux distributions that satisfy these 
constraints, in this underdetermined system, are derived by 
optimizing a particular objective function such as growth rate 
or ATP production (Schilling et al., 1999). Thus, solving the 
linear programming (LP) problem subject to all constraints 
will result in a specific set of steady-state fluxes, which meet 
the objective function as well. In the C. acetobutylicum 
network, an additional constraint is required due to the 
presence of cyclic acid uptake pathways (Desai et al., 1999). 
This constraint relates the acetate and butyrate uptake rates 
based on the enzyme kinetic and selectivity data and 
metabolite concentrations. The butyrate and acetate 
concentrations were obtained from chemostat data (Meyer et 
al., 1989). 

Ratebutyrate uptake / Rateacetate uptake=0.315[butyrate]/ [acetate]. (1) 

However, alternate flux distributions can be achieved, using 
linear programming technique, under the same optimal 
condition and objective value (Mahadevan et al., 2003). These 
alternate flux distributions give an idea about the existence of 
alternate pathways in the metabolic network. In flux 
variability analysis (FVA), the optimal objective value is 
calculated by FBA, and then each flux is maximized and 
minimized under the same FBA constraints as well as the 
fixed optimal objective value. The obtained ranges of flux 
variability demonstrate the feasible fluxes due to alternate 
optimal solutions in the metabolic network (Mahadevan et al., 
2003).  

2.3 Thermodynamics-based Metabolic Flux analysis (TMFA) 

In addition to the stoichiometric constraints, thermodynamics 
constraints have been imposed to further limit the solution 
space (Henry et al., 2007). Thermodynamics-based metabolic 
flux analysis (TMFA) integrates thermodynamics constraints 
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into a constraint-based metabolic model to generate 
thermodynamically feasible fluxes through the metabolic 
network and to provide data on feasible metabolite activity 
ranges and ∆ rG´ (Henry et al., 2007). The ∆ rG´0 of the 
metabolic reactions, required for thermodynamics constraints, 
were estimated using an improved group contribution method 
(Jankowski et al., 2008). 

2. 4 Batch Cultivation and Metabolomics samples 

Batch cultivations of C. acetobutylicum ATCC 824 were 
conducted anaerobically at 37̊C in 1.5 litres fermenters on 
Clostridial Growth Medium (CGM), which contains per litre 
of distilled water: KH2PO4: 0.75g; K2HPO4: 0.75g; MgSO4: 
0.348 g; MnSO4.1H2O: 0.01g; FeSO4.7H20: 0.01g; yeast 
extract: 5.0 g; glucose: 50g; NaC1: 1.0 g; para amino benzoic 
acid: 0.004g; asparagine: 2.0 g and (NH4)2SO4: 2g (Desai, 
R.P, 1999). The pH of the medium was adjusted to 5.5 before 
inoculation. 
Biomass concentration was monitored by measuring OD at 
600nm, while the samples were diluted to keep the optical 
density below 1.0. Product concentrations were measured 
using HPLC system (Biorad Aminex HPX87H column) at 
20˚C and 0.5ml min -1 of 5mM H2SO4 as eluent.  
The C. acetobutylicum metabolomics samples were taken in 
two growth phases and quenched using liquid nitrogen (Wang 
et al., 2006); Intracellular metabolite extraction from cell 
cultures was done according to the method described by 
Maharajan et al., (2003) using hot methanol; the extracted 
metabolites were then analyzed and quantified by NMR 
Spectroscopy.  

3. RESULTS AND DISCUSSION 

3.1 Genome-scale Network Reconstruction and Flux Balance 
Analysis 

The comparison of the genome-scale model (i FS700) along 
with two other previously available genome-scale metabolic 
models of C. acetobutylicum ATCC 824 is illustrated in Table 
1. The i FS700 includes 709 reactions, 679 metabolites and 
700 genes, and has a higher ORF coverage comparing to the 
other existing models. Furthermore, a number of genes on 
ATCC824 annotation file were identified to be mis-annotated 
in the TIGR-CMR database, and were highlighted by the 
discrepancies among various database annotations, so these 
genes have been re-annotated with a defined confidence level 
in this model.   
The comparison of the existing model reactions is depicted in 
Fig. 1. The major differences in these network reactions are 
related to fatty acid and phospholipid metabolism, purines and 
pyrimidines metabolism, and transport reactions. Integration 
of these three available models will be useful to obtain a 
comprehensive model of C. acetobutylicum metabolism and to 
develop a universal model (Lee et al., 2008). Both i JL432 
(Lee et al., 2008) and i RS474 (Senger et al., 2008) have been 
reconstructed mostly based on the KEGG database, and are 
similar in size; while i FS700 is mainly based on TIGR-CMR 
database. Also Senger et al. has applied a semi-automated 
reverse engineering approach for metabolic network 

reconstruction and gap filling, but i JL432 and i FS700 are 
mainly manually curated networks. 

 
 
Fig. 1.Venn diagram comparison of the existing model 
reactions. 
 
 Table 1. Specifications of C. acetobutylicum metabolic 
networks 

 
Another major difference of this model is the representation 
of the TCA cycle. The TCA cycle of C. acetobutylicum is 
incomplete and lacks several key enzymes. The degenerate 
TCA cycle has been found in many prokaryotes, but in those 
cases, the pathways of 2-oxoglutarate, succinyl-CoA and 
fumarate syntheses proceed in both reductive and oxidative 
directions (Nolling et al., 2001). It was previously suggested 
that 2-oxoglutarate, which is a key precursor in amino acid 
biosynthesis pathways, is being produced through either 
reductive counter clockwise direction of TCA cycle (Nolling 
et al., 2001, Lee et al., 2008) or from ornithine through the 
reverse direction of arginine biosynthesis pathway  and urea 
cycle (Senger et al., 2008). 
 However, a recent flux profiling experiment by Amador-
Noguez et al. (2009) demonstrates that the TCA cycle in C. 
acetobutylicum is bifurcated. This suggested that 2-
oxoglutarate is being produced through the oxidative side of 
the TCA cycle from oxaloacetate, despite the putative lack of 
citrate synthase, and succinate production from oxaloacetate is 
through the reductive direction of TCA cycle via malate and 
fumarate. Therefore, citrate synthase was included as a non-
gene associated pathway in this model. In C. acetobutylicum 
the succinate dehydrogenase, which reduces fumarate to 
succinate, is missing and it is assumed in this model that 

Model Features  i FS700 i RS474 i JL432 
Genes 700 474 432 
Reactions 711 552 502 
None-gene 
associated reactions 69 NA 71 
Metabolites 679 422 479 
ORF coverage % 16.3 12.6 11.2 
Re-annotated ORFs 180   
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another unknown dehydrogenase catalyzes this reaction 
(Nolling et al., 2001). Furthermore, the enzyme involved in 
succinyl-CoA formation is missing. This genome encodes a 
CoA transferase which catalyzes the acetyl-CoA and butyryl-
CoA formations in solventogenic phase, and it is plausible 
that this enzyme also catalyzes the succinyl-CoA formation 
from succinate (Nolling et al., 2001).  
To analyse the reconstructed metabolic network, and to 
simulate the growth and metabolism in a continuous culture 
(Meyer et al., 1989), FBA was conducted using maximization 
of biomass as the objective function. The results showed that 
the predicted growth rate is in good agreement with the 
reported growth rate (µ=0.44 compared to the experimental 
value of µ=0.43); however the cell produced only acetate, 
hydrogen and CO2 in silico. Therefore, in order to investigate 
the possibility of the alternate flux distributions, flux 
variability analysis was performed (Mahadevan et al., 2003).   

3.2 Flux Variability Analysis 

The results of FVA under various sets of stoichiometric, 
thermodynamics and metabolomics constraints are 
demonstrated in Fig 2a.  In these analyses, the growth rate has 
been fixed to its predicted value by FBA (µ=0.44). The FVA 
determines the maximum and minimum values for each flux 
that can satisfy the model constraints as well as the exact 
growth rate. In all cases, there are significant flux variation 
ranges for the product formation rates, and all of the 
experimental chemostat flux data fall in these model-predicted 
ranges.  

The alternate optimal solutions are due to the presence of 
equivalent pathways in the metabolic network (Price et al., 
2002, Mahadevan et al., 2003). There were 191 reactions with 
significant variation ranges (above 0.1 mMol.gDCW-1. h-1), 
which can be examined for identification of the alternate 
 pathways using extreme pathway analysis (Schilling et al., 
2000). However, alternate pathways are equivalent routes for 
the production of metabolites, under the same objective value, 
and cannot describe the various fluxes through these 

alternative product pathways. These results suggest that these 
various products act as alternative carbon and electron sinks 
in C. acetobutylicum metabolism.  All of these pathways are 
thermodynamically feasible, and consequently, the fluxes 
through them are perhaps determined by the regulatory 
network resulting in different product patterns. The iFS700 
model was able to predict the growth rate and flux variability 
in a chemostat and incorporate metabolomics data. 
 Furthermore, it is metabolically feasible to have both acids 
and solvents produced simultaneously in the exponential 
growth phase (Harris et al., 2000); we applied FVA under 
predicted maximum growth and butanol formation rates, and 
these results are depicted in Fig. 2b and suggest that hydrogen 
and acetate formation pathways are essential under maximum 
butanol formation rate and butyrate, ethanol, lactate, acetone 
and acetoin pathways can be eliminated.  A previous study 
has also shown that higher amount of butanol is produced in 
iron limited cultures (Peguin et al., 1995). Lactate formation 
pathway is a less efficient alternative for NAD regeneration 
and energy production, when the activity of hydrogenase 
enzyme has been blocked or in iron deficient cultures where 
the levels of ferredoxin and the iron containing hydrogenase 
are low (Jones et al., 1986). Also, in CO-sparged culture of C. 
acetobutylicum, where the activity of hydrogenase enzyme 
has been blocked using carbon monoxide, a drastic increase in 
lactic acid formation has been reported (Datta et al., 1985). 
Lee et al. (2008) has also applied FBA to analyze this 
metabolic system, and maximization of biomass has been the 
objective function for modelling the acidogenic phase, and 
minimization of metabolic adjustment (MOMA) (Segre et al., 
2002) has been applied to simulate the solventogenic phase. It 
has been shown that the QP-based approach results are 
significantly dependant on the reference flux distribution 
which is obtained from FBA (Mahadevan et al., 2003). So the 
predicted solventogenic fluxes will be dependent on the 
predicted fluxes in the acidogenic phase, where there are 
significant differences in the alternative optimal solutions as 
illustrated in Fig 2. 

Fig. 2. The range of product flux variations for C. acetobutylicum metabolic products. 

(B)

 

(A) 
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3.3 Thermodynamics-based Metabolic Flux Analysis 

In order to further constrain the model solution space and 
improve the model predictability, thermodynamics along with 
metabolomics information were integrated into the model 
using TMFA. Thermodynamics data of the model reactions 
were estimated by group contribution method (Jankowski et 
al., 2008). The upper and lower bound for metabolite 
concentrations were set at 250mM and 10-9 mM;  for 
measured intracellular metabolites the concentrations were 
restricted to the observed ranges, and extracellular metabolites 
were fixed at the measured concentrations. TMFA along with 
metabolomics constraints predicted the same growth rate and 
flux ranges obtained using the FBA and FVA. So, all of the 
reactions involved in the in silico growth, which are not part 
of internal loops, are thermodynamically feasible. 
Furthermore, by analyzing the model-predicted ranges for the 
reaction Gibbs free energies (∆ rG´) putative regulatory sites 
(Kummel et al., 2006) in C. acetobutylicum metabolic 
network can be identified.  

3.4 Metabolomics Data Analysis  

Knowledge of the intracellular metabolite concentrations can 
be valuable for further characterizing the metabolic shift and 
shift inducing conditions in C. acetobutylicum metabolism. 31 
intracellular metabolites were quantified, and the list of some 
of these metabolites with the error estimates and some of the 
extracellular concentrations are presented in Table 2. The total 
molar concentration of metabolites was approximately 
245mM which is comparable with the E. coli metabolite pool 
of 300mM (Bennet et al., 2009). Measured metabolites are 
mainly amino acids, which are present at the same level in  
 

 
 
 
 

both phases. The most dominant metabolite after glucose was 
asparagine, followed by alanine and glutamate. This is in 
contrast to the E. coli metabolome, where glutamate was the 
most abundant compound (Bennet et al., 2009). Nucleotides 
and redox coenzymes could be identified but were present in 
very low amounts, so could not be quantified. In terms of the 
significance of the changes in metabolite concentrations, 
butyrate and acetate concentrations show a significant 
increase in solventogenic phase, while phenylalanine, 2-
oxoglutarate and fumarate show significant decrease during 
solventogenesis consistent with their role as precursors for 
biomass synthesis. 

4. CONCLUSIONS 

Flux balance analysis cannot predict the complex 
metabolism of C. acetobutylicum properly, and additional 
constraints are required to narrow down the solution 
space; previously, specific proton flux state (Senger et al., 
2008 b) was developed for this purpose; here we incorporated 
thermodynamics and metabolomics data. Although it did not 
improve the predictability of the model, it allows for 
thermodynamically feasible flux distributions. On the other 
hand, incorporating the regulatory network in the 
genome-scale model is necessary for describing the 
metabolic shift from acidogenic to solventogenic phase 
(Covert et al., 2001). The intracellular metabolome of C. 
acetobutylicum was quantified in two phases, but a dynamic 
metabolome profiling experiment is necessary to trace the 
intracellular metabolite concentration changes over time and 
during the metabolic shift. 
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and Ramanarayan Krishna Murthy and Nikolaos Psychogios for their help in 
the metabolomics analyses. We also would like to appreciate the supports of 
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Metabolites 

Acidogenic phase Solventogenic phase Significant variation at 
95% confidence 

level Intracellular (µM) Extracellular (mM) Intracellular (µM) Extracellular (mM) 
Glucose 221191.4 (47574.5) 270.0 (2.2) 159967.1 (53935.6) 215.5 (2.5)  
Acetate 987.9 (362.2) 6.3 (5.9) 2618.4 (344.7) 19.7 (5.5) ● 
Acetone 68.7 (37.4) 0.15 (0.16) 47.9 (21.1) 12.7 (3.0)  
Butyrate 810.0 (379.7) 10.2 (9.9) 5116.6 (1438.4) 21.9 (9.8) ● 
Ethanol 115.6 (12.2) 2.07 (2.07) 338.4 (112.3) 4.6 (1.9)  
Formate 208.1 (54.2) 0.12 (0.15) 109.4 (25.8) 0.05 (0.05)  
Lactate 386.0 (110.5) 4.9 (7.2) 287.0 (55.2) 6.1 (3.6)  
Pyruvate 92.5 (23.3)  111.8 (22.9)   
Alanine 1730.8 (459.1)  2245.5 (415.2)   
Glutamate 1249.5 (248.6)  1267 (176.7)   
Asparagine 14089.5 (3749.7)  10022.2 (1232.6)   
Methionine 171.4 (52.9)  92.5 (10.3)   
Phenylalanine 529.8 (92.7)  210.8 (153.3)  ● 
2-Oxoglutarate 72.3 (21.1)  0  ● 
Citrate 15.3 (9.9)  0   
Fumarate 7.3 (0.71)  0  ● 
Succinate 289.2 (22.9)  209.5 (110.2)   
Isocitrate 185.1 (60.9)  602.9 (413.7)   

Table 2. Intracelluar and extracellular metabolite concentrations in acidogenic and solventogenic phases 
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