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Abstract: This article describes Merlin, a user-friendly program that performs functional
genomic annotations of lists of genes. Merlin retrieves information of each homologue and
automatically scores the results, allowing the user to change the score selection, and dynamically
(re-)annotate the genome. Merlin expedites the transition from genome-scale data to SBML
metabolic models, allowing the user to have a preliminary view of the biochemical network.
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1. INTRODUCTION

Genome-scale reconstructed metabolic models are based
on the well-known stoichiometry of biochemical reactions
and can be used for simulating in silico the phenotypic
behaviour of a microorganism, under different environmen-
tal and genetic conditions, thus representing an impor-
tant tool in Metabolic Engineering [Rocha et al. (2008)].
The reconstruction of a metabolic network associates the
genome of a given organism to its physiology, through
the replication of the biochemical reactions and molecular
mechanisms taking place in a given organism [Francke
et al. (2005)].

The genome-scale reconstruction of metabolic networks
encompasses several steps, such as genome annotation,
reactions identification and stoichiometry determination,
compartmentation, determination of the biomass composi-
tion, energy requirements and additional constraints. The
first step (genome annotation) is essential to this type of
reconstruction, because precursory data can be extracted
for the model reconstruction. Information such as gene or
open reading frame (ORF) names, assigned cellular func-
tions, sequence similarities, and, for the enzyme coding
genes, the Enzyme Commission (EC) number(s) should be
retrieved to accomplish the first stage of the mathematical
model development [Rocha et al. (2008)].

According to the Integrated Microbial Genomes (IMG)
system [Markowitz et al. (2006)] there are currently more
than 4.000 genomes (4.368 as of December 2009) fully
sequenced with more than 700 genomes (747 as of Decem-
ber 2009) being drafted right now. Sequence similarities
between genes and genomes can be established using well
? This work is supported by a PhD grant from the portuguese
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known algorithms such as BLAST [Altschul et al. (1990)]
or FASTA [Lipman and Pearson (1985)].

2. GENOME ANNOTATION

Genome Annotation encompasses both ”gene finding”, on
the sequenced genome, and the assignment of biological
functions to the recently found genes [Medigue and Moszer
(2007); Salzberg (2007)].

Gene finding in eukaryotic genomes is different than in the
prokaryotic ones, as about 90% of the bacterial genome
are coding sequences. On the other hand, higher eukary-
otes have less than 10% of coding sequences. Moreover,
eukaryotes generally have two or more overlapping open
reading frames, and it is difficult to identify the start of
translation and find regulatory signals such as promoters
and terminators [Salzberg et al. (1998)].

There are several software tools for gene finding. Almost
all use probabilistic methods, such as Hidden Markov
Models (HMM), to identify coding sequences within the
open reading frames. Examples of such applications are
GLIMMER [Salzberg et al. (1998)], GenMark [Borodovsky
and Mcininch (1993)], EuGène [Foissac and Schiex (2005)].
Alternatively, there are some tools that use methods other
than HMM, such as Gismo [Krause et al. (2007)]. A list of
some of these, and some other, applications is available at
www.genefinding.org/software.html.

Some of the software applications listed above also attach
biological data (functional annotation) to the recognised
genes. Other tools that annotate the genome at the pro-
tein level, are GOAnno [Chalmel et al. (2005)], or Gene-
FAS [Joshi et al. (2004)] which uses Bayesian probability
of function similarity between two connected genes and
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several other tools. These applications try to assign one or
more proteins to each gene product.

The gene functional annotation procedure can be defined
as the assignment of functional information to a specific
gene. Such information is often obtained by similarity to
formerly characterized sequences, found in several online
or local databases [Ouzounis and Karp (2002)]. At the
time of the annotation, a given gene product may be
unknown, and labelled as hypothetical protein. Even if a
”real” protein is assigned to a gene, such protein may not
be the correct one, leading to a misclassification.

2.1 Re-Annotation

As the ever-increasing knowledge of genomes grows, the
annotation of genes becomes outdated over time [Salzberg
(2007)]. Thus, the re-annotation of a genome, especially for
genes classified as hypothetical proteins, is very important
for assuring an up-to-date gene list and not compromising
future similarity alignments for newly sequenced genes.
The creation of a gene-function wiki is proposed by Wang
(2006). Such wiki would also simplify the selection of a
similarity search result. Salzberg (2007) goes even further,
and proposes the development of genome wiki’s, where
each genome should have a wiki and biologists would help
the re-annotation process in a familiar environment. There
are already some genome wiki’s for several organisms such
as the Drosophila wiki, the fungal genomes wiki or the E.
coli wiki. However, the wiki solution can be very demand-
ing at the curation level, thus it can only be adopted for
organisms which have already been systematically studied,
either automatically or manually.

Nevertheless, after the initial annotation of the genome,
there are several circumstances that can lead to a genome-
wide re-annotation. Whether new genes or protein func-
tions are discovered, a research group tries to determine
the reproducibility of an existing annotation, or just be-
cause the information associated to a specific organism is
known to be outdated, a genome-wide re-annotation will
update the data assigned to such genome [Ouzounis and
Karp (2002); Tamaki et al. (2007)].

There are already some applications that perform semi-
automatic or manual functional annotation of a genome.
However, most of these tools are aimed at genome projects
and do not provide outputs that allow easy genome-
wide (re-)annotations for the development of genome-scale
metabolic models.

2.2 BLAST

BLAST [Altschul et al. (1990)] is used to compare two
sequences (pairs of genes or proteins) and to search for
locally similar regions on such sequences. Initially, the
sequence is matched to nucleotide or amino acid sequences,
throughout the defined target databases, containing mil-
lions of sequences. Afterwards, the statistical significance
for each sequence match is calculated. The results of a
BLAST analysis provide functional and evolutionary rela-
tionships between related sequences. Though being similar
to FASTA, BLAST is quicker be-cause it searches only for
rarer, more significant patterns in sequences. Nevertheless,

these two algorithms are the most reliable ones to find close
homologues between genes [Salzberg et al. (1998)].

3. MERLIN’S SYSTEM AND METHODS

We introduce Merlin for the reconstruction of genome-
scale metabolic models. Some features within Merlin over-
lap several other software tools. Merlin allows the user to:
perform similarity searches for any organism that has its
genome sequenced, perform semi-automated dynamic (re-
)annotation of the genome, and generate new GenBank
genome annotated files (.gbk) from the existing ones, for
submission to NCBI, EMBL and/or DDBJ. The user may
also combine the similarity data with the information pre-
viously loaded into a local database and export the results
to a metabolic model in the Systems Biology Markup
Language (SBML) [Hucka and et al (2003)] format.

3.1 Specifications

Merlin is composed by two modules: the Dynamic An-
notation Tool and the Model Reconstruction Tool, each of
which will be further described in the next sections.

The Dynamic Annotation Tool automatically annotates
lists of genes, properly provided in the FASTA format (files
containing either nucleotide or amino acid sequences). This
module allows the user to define the BLAST similarity
searches initial parameters such as the e-value, maximum
number of hits, remote database, etc. The results of the
BLAST search are then scored, allowing the user to
dynamically (re-)annotate each gene, either by accepting
the scorer selection or selecting another entry, supported
by a quantifiable confidence level. If none of the presented
results satisfies the user, a manual record can also be
added.

The Models Reconstruction Tool allows the user to load
information from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [Kanehisa and Goto (2000)], integrate
it with information from the previous module and later
build the metabolic model storing it in the well accepted
SBML implementation.

Merlin was developed using the Java and Perl program-
ming languages and is supported by the AIBench frame-
work(http://www.aibench.org).

Merlin is available for Windows and distributed at
http://sysbio.uminho.pt/merlin merlin under the GNU
General Public License.

3.2 Merlin Architecture

The (re-)annotation process in Merlin is based on simi-
larity searches to the online GenBank databases, as illus-
trated in figure 1 where Merlin’s architecture is depicted.
From this process, a list of files is generated, one for
each gene, containing similarity information. After that,
information for all the homologues present in each file is
retrieved from the Entrez Protein database and loaded into
a local relational database.

The acquired information is shown for user appraisal and
interaction. The user can then select the information based
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Fig. 1. Schematic representation of Merlin’s architecture.

on the confidence level scores, provided by Merlin. After
the manual curation, the user can export a new annotated
file and/or integrate the information with the previously
loaded KEGG information.

The last stage is the SBML model generation. Since
the only metabolic information retrieved from a BLAST
search is the EC number, the similarity information is
integrated with the KEGG data, providing new reactions
to be added to the metabolic model. Hence, the reactions
stored in the local database, which are catalysed by the
enzymes identified in the similarity search, along with the
reactions already assigned for the case study by KEGG,
are accepted for the generation of the metabolic model.

3.3 Operations implementation

Merlin’s (re-)annotation: The purpose of this operation
is the inference of candidate functions that could be
assigned, by homology, to the proteins encoded by each
gene in the genome. Such process is depicted in figure 2
and will be next described.

First of all, the genome files are downloaded from the Gen-
Bank ftp website. Next, the application uses a fasta file per
chromosome of the organism that is being studied. These
files contain the amino acids or nucleotides sequences for
each gene.

Then, such files are submitted to a Perl routine that runs
BLAST, remotely, to one of the GenBank databases. This
routine was developed amid the BioPerl project [Stajich
and et al (2002)]. For each gene, the result of the BLAST
is kept in a file that contains homology information. For
each homologue identified, the returned homology data is
the following: locus identifier, e-value, BLAST score and
organism.

• Program:
• blastp

• Database:
• All non-redundant 

GenBank CDS
• Maximum e-Value:
• 1e-30

• Matrix:
• BLOSUM62

one file per 
gene

• Per gene(file) retrieve:
• Query sequence
• Locus identifiers
• e-Values
• scores
• Organisms

several homologues 
per gene(file)

• Per homologue 
retrieve:
• Taxonomy
• Organelle
• Locus tag
• EC number
• Product
• Molecular weight

upload to relational 
database

GenBank 
files

Step 1: 
BioPerl Step 2: 

BioJava Step 3: SQL

Fig. 2. Path from genome to homology data.

After that, a java tool, developed upon the BioJava
project [Holland et al. (2008)], is run to collect information
about each of the homologues identified for every gene.
The data is retrieved remotely from the Entrez Protein
database. The information to be downloaded is the fol-
lowing: taxonomy, organelle (if available), chromosome (if
available), locus tag, product (protein name), EC number
(if available) and molecular weight.

Finally, the downloaded information is stored in a MySQL
relational local database, where it is available to be used
for the reconstruction of the metabolic model.

Merlin’s Load Database: This operation loads several
KEGG data files (compound, glycan, compound.inchi, re-
action, ec.list, enzyme, organism enzyme.list and organ-
ism.ent) and builds a local database that allows the user
to later assemble a genome-scale model, selecting and
editing reactions, to be included in the model. This fea-
ture is handled by a Perl routine that parses and loads
data from the files listed above, which were downloaded
from the KEGG’s ftp website 1 . Some of the information
downloaded from KEGG is generic (ligand and pathway
databases - compound, glycan, compound.inchi, reaction,
ec.list, and enzyme). That means that it is the same for
all organisms. On the other hand, data downloaded from
the KEGG genes database (organism enzyme.list, organ-
ism.ent) is organism specific. Such data specifies which
enzymes are assigned to each gene and the gene itself.

Merlin’s Views and Edition: The views of the local
database enable the edition of any loaded information,
except the compounds information. Therefore, the user
can edit genes, proteins and reactions. Moreover, new
genes, proteins and/or reactions that are not available
can be added to the local database. For example, a new
reaction can be added by selecting existing compounds and
assigning them with stoichiometric coefficients.

Merlin’s Integrate: This operation compares the enzyme
information retrieved by similarity with the data already
available in the local database. The common unique identi-
fier used for cross-referencing information is the locus tag.
In case of conflict between the local database information
and the BLAST data, the user can select which data
should be automatically preferred or if the data should

1 ftp://ftp.genome.jp/pub/kegg/
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be merged. In the later case, the user will have to resolve,
manually, each conflict that arises from the data integra-
tion.

Merlin’s SBML Builder: This operation allows the user
to export the model, currently stored in a relational
database to the well accepted SBML format. This feature
allows the user to employ the model in other applications,
such as OptFluxRocha et al. (2010), very easily.

3.4 BLAST information classifier(scorer)

The BLAST information viewer allows the user to visualise
and edit the information in a table format, where the can-
didate protein names and EC numbers are automatically
scored and displayed in ”drop down boxes”. In this work
a BLAST hits scorer is proposed, where the candidate
EC numbers of each gene are ranked according to the
following proposition: the global confidence level S for the
assignment of an EC number to a certain gene, can be
assessed from the frequency score (S1) and the taxonomy
score (S2) according to equation 1.

S = αS1 + (1 − α)S2 (1)

Where α (0 < α < 1) determines the relative weight given
to the frequency and taxonomy scores. S1 is the frequency
of each EC number divided by the global number of hits
for such gene, S2 is the taxonomic score for the first j
hits (default value j = 3) of each distinct EC number, as
depicted in equation 2.

S2 =

j∑
i=0

ti

(
1

tmaxj(1 − (j − k)β)

)
(2)

Where ti is the taxonomic frequency determined by count-
ing up the number of common taxa between the case
study and the homologue organism, tmax is the maximum
taxonomic frequency value, obtained by adding up the
case study taxa, and (k) is the number of available hits
of a given EC number (0 < k < j). β (default value
β = 0, 15;0 < β < 1) is the penalty cost, implemented in
equation 2, for the difference between the defined number
of hits j and the number of available ones k. β is used to
avoid false positives, as it penalises the taxonomy score for
EC numbers that may have been falsely annotated, since
there may exist very few hits for such assignment.

Using S. cerevisiae as an example for the target taxa:

• Eukaryota; Fungi; Dikarya; Ascomycota; Saccha-
romycotina; Saccharomycetes; Saccharomycetales; Sac-
charomycetaceae; Saccharomyces; Saccharomyces cere-
visiae

The tmax value is 10.

Consider the taxonomic classification of the following
possible BLAST hits which assign the same EC Number
to a specific S. cerevisiae gene:

• Eukaryota; Fungi; Dikarya; Ascomycota; Sac-
charomycotina; Saccharomycetes; Saccharomyc-
etales; Saccharomycetaceae; Kluyveromyces; Kluy-
veromyces lactis

• Eukaryota; Fungi; Dikarya; Ascomycota; Sac-
charomycotina; Saccharomycetes; Saccharomy-
cetales; Saccharomycetaceae; Kluyveromyces; Klu-
yveromyces marxianus

• Proteobacteria; Gammaproteobacteria; Enterobacte-
riales; Enterobacteriaceae; Escherichia; Escherichia
coli K-12

The taxonomic frequencies calculated for the above hits by
adding up the bold taxa, are 8, 8, and0. Hence, according
to equation 2 and using the defaults, S2 = 0.53.

If, for the same S. cerevisiae gene, only the eukaryotic
organisms were retrieved by similarity, the number of
available hits would be k = 2. Therefore, as the default
number of hits would be j = 3, the penalty cost β
would influence the value of the taxonomic score S2, which
would be S2 = 6.27. Hence, despite the penalty cost, the
taxonomy score value would be higher than in the previous
case.

Although the default α value is set to α = 0.5, it
can be modified (in the BLAST data viewer). Several
factors may influence the value that the user assigns to
this parameter, such as the studied organism being a
prokaryote or eukaryote. As there are more sequenced and
annotated prokaryotes than eukaryotes, it is expected that
a higher α value is assigned to prokaryotes (based on data
not shown), since the frequency value S1 will be higher. On
the other hand, well studied organisms (either prokaryotes
or eukaryotes) may also have high α values, as they will
probably get more BLAST hits (e.g. several strains of the
same specie), increasing the frequency score S1.

At last, Merlin automatically selects for (re-)annotation
(ticks the Select check box on the BLAST information
viewer) the results that have the highest global confidence
values (S), but only if S is higher than the confidence level
threshold of S = 0, 5. Nevertheless, the user can perform a
dynamic annotation since all the results are available, for
user evaluation, in drop down boxes.

4. METHODOLOGY

Two of the most well studied organisms were selected for
Merlin’s validation: E. coli str. K-12 substr. W3110 and S.
cerevisiae. For each organism a project was created within
Merlin, and each project’s local database was loaded with
the information available on KEGG for such organism
(using Merlin’s load database operation).

The relevance of the results automatically selected by
Merlin was assessed by evaluating the integration of the
information retrieved by homology with the data loaded
from the KEGG database. Therefore, the enzymes selected
by the BLAST scorer were matched to the information
loaded from KEGG.

As KEGG only assigns enzymes to genes, only proteins
that have an EC number assigned could be compared to
the proteins available at the local database, hence only
the enzymes were matched. Names of genes that encode
other proteins could not be integrated. However, this is
compatible with the fact that metabolic models use only
metabolic genes.
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Table 1. BLAST parameters.

Parameter Value

Matrix BLOSUM62
E-Value (maximum) 1e-30
Word Size 3
Algorithm blastp
Remote database All non-redundant GenBank CDS
Max hits number 100

j (minimum number of hits) 3
β (penalty) 0.15

Gene Names per gene
Match 449 26.41%
Distinct 135 7.94%
BLAST unavailable 27 1.59%
KEGG unavailable 1089 64.06%

1700

46.85%

3.61% 1.63%

47.91%

30.59%

3.76% 1.59%

64.06%
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Fig. 3. Percentage of EC numbers matching.

To assess the accuracy of the software, when retrieving
homology information, the assignment of the gene names
was evaluated. All genes were selected instead of using
only genes that encode enzymes, seeing as these data are
retrieved from the genes themselves when using the non-
redundant database.

For E. coli the α value used to score the BLAST hits was
α = 0.4. However, since S. cerevisiae, though being also a
well studied organism, is a Eukaryote, the α value was set
to α = 0, 2.

Table 1 characterises the parameters used to perform
similarity searches for the case studies. The presented
values are Merlin’s default standards.

5. RESULTS AND DISCUSSION

The matching of the BLAST data with the KEGG
database is shown in Table 2:

Table 2. Number of genes (un)matched for E.
coli K-12 and S. cerevisiae.

EC numbers protein names

E. coli S. cerevisiae E. coli S. cerevisiae

Match 903 842 766 674
Partial Match 22 31 - -
Distinct 68 73 227 272
Only KEGG 44 64 44 64
Only BLAST 395 727 395 727

Total 1432 1732 1432 1732

As demonstrated on Table 2 the studied organisms had
similar distributions for gene matching between both
databases, either on EC numbers or protein names.

As depicted in Figure 3 and Table 2, the results for the
EC numbers integration are similar for E. coli and S.
cerevisiae. For the bacterium there were a total of 1432
genes which encoded enzymes. More than 60% of those

genes were assigned with the same protein by KEGG
and by similarity. For the yeast, 1732 enzyme encoding
genes were identified, with almost 50% of the genes being
assigned with the same enzyme in both databases. For
the two organisms less than 2% of the genes assigned by
KEGG were only partially matched by Merlin’s similarity
search for homologues.

For both organisms less than 5% of the genes were assigned
with different EC numbers by similarity and on KEGG.
Most of the cases were genes that encoded an incomplete
EC number on one database and the complete EC umber
on the other database

Over 3% of the genes were assigned as enzyme coding
genes in the local database, but no similarity was found
by Merlin when BLAST was performed. The most un-
expected results were obtained on the genes that were
only appraised by Merlin’s similarity search. For E. coli,
Merlin identified 395 candidate genes, which may encode
enzymes, with scores beyond the confidence level thresh-
old. Moreover, for the yeast, Merlin identified ( 42%) 727
candidate genes from the 1732 total enzyme coding genes.
Such high percentage is explained by the low α value used
for eukaryotes. As explained before, eukaryotes should be
scored with a lower α value since there are less sequenced
organisms with complex structures, thus the taxonomy
score should be preferred over the frequency score.

The candidate genes should be verified with organism
specific databases such as EcoCyc 2 for E. coli or SGD 3

for S. cerevisiae. Nevertheless, the enzymes assigned by
the candidate genes may also be helpful for filling gaps or
find alternative pathways in the metabolic model. Hence,
the information provided by homology, if confirmed by
experimental evidences, can be useful for the development
of a more complete and robust metabolic model.

Table 3. Genes names matching for E. coli K-
12 and S. cerevisiae.

E. coli S. cerevisiae

Match 4830 4148
Distinct 0 9
Only Local 2 337
Only BLAST 5 48

Total 4837 4542

As expected the gene names matching was very straight-
forward with over 90% matches for both bacterium and
yeast (91.33% and 99.86% respectively). The distinct gene
names cases are possibly synonyms not available in the
local database. However, the gene names only available
in one of the databases (BLAST or KEGG) are related
to genes that are missing from the other database. This
issue concerns the version of the annotation, as Merlin
retrieves the most up to date homology information and
allows the user to employ the most up to date GenBank
fasta files for similarity search. Yet KEGG annotations
may be outdated. This problem may also have been an
issue for the EC numbers and protein names integration.

2 https://www.ecocyc.org
3 http://www.yeastgenome.org/
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6. CONCLUSIONS

With the ever increasing amount of genomic data becom-
ing available, every tool developed to interpret and make
sense of such data is useful, as appraising such bulk loads
of data can be very tedious and time consuming.

Merlin is proposed as a user-friendly tool, which allows
to attain comprehensible information and perform a semi-
automated dynamic annotation, relying in the most up
to date information, available in the GenBank database,
and integrate such data with the information already
available at the well accepted KEGG database, for the
development of a more robust metabolic model. In this
paper it was shown that Merlin identifies almost all of
the information provided by KEGG, and also specifies
candidate EC numbers for other genes. Moreover, such
model may be retrieved in the Systems Biology Markup
Language for in silico processing.

Merlin obtains the most up-to-date information from on-
line databases, allowing the user to perform regular simi-
larity searches and update the genome annotation.

7. FUTURE WORK

Merlin will be embedded with other tools such as PSORT-
B, SignalP or TargetP, for subcellular protein localization
and will be able to integrate other databases, namely
UniProt. Reactions for which the EC number is not
available will also be added to the metabolic model.
A specific operation will be added for the inclusion of
the biomass formation equation, using the compounds
available at the local database.
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