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Abstract: So far, few large scale kinetic models of metabaktworks have been
successfully constructed. The main reasons for @hés not only the associated
mathematical complexity, but also the large nundfamknown kinetic parameters
required in the rate equations to define the systeroontrast to kinetic models, the
constraint-based modelling approach bypasses thiffsailties by using basically
only stoichiometric information with certain phys@hemical constraints to delimit
the solution space without large fitted parametss.sAlthough these constraint-
based models are highly relevant to predict feasgitady-state fluxes under a
diverse range of genetic and environmental conutithe steady-state assumption
may oversimplify cellular behaviour and cannot jicedime-course profiles. To
overcome these problems, combining these two appesaappears as a reasonable
alternative to modelling large-scale metabolic reeks. On the other hand, several
of the experimental data required for model comsion are often rare and in this
way it is usually assumed that the enzyme concimtisaare constant.

In this work, we used a central carbon metaboliwvoek of E. coli to investigate
whether including high throughput enzyme conceittnatlata into a kinetic model
allows improved predictions of metabolic flux dibtitions in response to single
knockouts perturbations. For this purpose, Eancoli model, based on results
obtained from flux balance analysis (FBA) and appmate lin-log kinetics was
constructed. The intracellular fluxes distributipodtained using this model, were
compared with publisheid vivo measurements.

Keywords: E. coli network, lin-log kinetics, constraint-based appigadata
integration, mutants flux prediction

of the major problems in the development of thesetic

1. INTRODUCTION models is that it requires a prior knowledge on rieéwvork
One of the great goals of Systems Biology is tontjtatively — structure and a large amount of experimental data f
understand the dynamic behaviour of microbial cefls estimation of kinetic parameters (Jagaman and Geyde
contribute to strain improvements through geneti2g006). In contrast to kinetic modeling, constrdased
perturbations (Leeet al, 2005). To achieve this goal, modeling requires only stoichiometric informatiomda
guantitative models describing metabolic networkalyics imposition of constraints to delimit the solutiopase (Price
are a powerful tool as “dry lab” platforms to simtd et al, 2003). Although these models can be used toigired
experiments before they are perforniedivo (Kitano 2002). steady-state behaviour using flux balance analysey fail
Integration of different types obmics data sets in these to capture the transient behaviour of metabolisrhese
models is also fundamental to the purpose of Systemreasons motivate the development of novel dynamic
Biology and can bring major benefits in many reskar modeling methods and of efforts to fill the gap vietn
efforts (Idekeret al, 2001). constraint-based and dynamic models. Recentlyeat gffort
In the last years, two major mathematical modelinas been carried out by researchers to developnatiee
frameworks have been adopted to describe the bmlvasf approaches for large-scale metabolic networks,dtkéstical
large scale metabolic systems (Gombert and Niekg1). frameworks, approximate non-mechanistic kinetierfats, or
The first is kinetic modeling, which predominantlges non- hybrid modelling approaches (Jamshidi and Pals2008;
linear ordinary differential equations (ODE’s). Rrosuch Resendis-Antonio, 2009; Smallboeeal, 2007; Yugiet al,
models, mechanistic insight about the modeled nudec 2005). The approximate kinetic formats, which héabe
interactions can be obtained by means of numericaflvantage of containing a low number of kineticapagters
simulation and other computational analyses. Howewre are therefore of general interest.
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In an ODE system, the enzyme kinetic rate lawsesgnt the
interactions between the enzymes’ catalytic fumgiand the
many metabolites present in the cell. On the ottaard, the
distribution of metabolic fluxes is also regulatbyg other
mechanisms at several levels, like post-transorati control
and gene expression. However, the usability of high
throughput experimental data like mRNA or protesvdls
has been limited by the fact that there are no Igintipear
relationships between the expression level of aayrae and
the metabolic flux of the corresponding biochemieslction
(ter Kuile and Westerhoff, 2001).

To the best of your knowledge there are very feme#c
models that include the change of enzyme leveéstionate a
flux and metabolite concentrations distributionsstéad,
kinetic rate equations with fixed maximal velocitibhave
normally been adopted.

In this work, to illustrate our approach first wenstructed
and validated a large-scale kinetic model witha lmumber
of parameters based on a special variant of theoapate
lin-log kinetics applied to the central carbon netkof E.
coli (Chassagnoleet al, 2002). Moreover, we evaluated
whether the integration of high throughput enzyraeels
data into the model allows the improvement of cstiesicy in
the prediction of flux distribution, through comfzan with
published data (Ishit al, 2007) under four different single-
knockout perturbations.

2. MATERIAL AND METHODS
2.1 Dynamic mass balance

Dynamic modelling of biochemical networks has eeolv
substantially in recent times, aided by the arrival
completely sequenced genomes (Blattatral, 1997), the
development of high-throughput technologies to dbpi
obtain quantitative measurements for multiple mefitds
(Theobald et al, 1993; Visseret al, 2002), and the
completion of publicly-available metabolic
(Schomburget al, 2002; Sundararat al, 2004)

ODE'’s systems are the most commonly applied tectenfqr
quantitatively modelling of a biochemical networkttwn
species of the generic form (Conrad and Tyson, R006
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where C; is the concentration of metaboliie N; is the
stoichiometric coefficient of metabolitein reactionj. The
termr; is the rate of the™ reaction, which depends non-
linearly on the metabolite concentrations and kinet
parametergy is the specific growth rate amdis the number
of reactions in the network (Heinrich and Schusit®96). If
we know all these quantitative information and theaction
kinetics the ODE systems can be numerically solved.

2.2 Network of E. coli central metabolism

In this contribution, to demonstrate the applicabibf our
approach, the full mechanistic ODE model for theticd
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carbon metabolism dt. coli, formulated by Chassagnoés

al. (2002), was chosen as a benchmark. Its stru@uyeven

in Fig. 1.

The model integrates the reactions of phosphoteaasé
system (PTS) for glucose uptake, glycolysis, pentos
phosphate pathway and several branches that Idaidriass
formation, which have been validated ibyvivo time course
data after a glucose pulse during 40 seconds.

The E. coli kinetic model is comprised of 18 metabolites and
7 co-metabolites participating in 30 reactions wéthotal of
116 kinetic parameters. The set of ODE’s, desagibin
metabolite concentration dynamics were solved ughng
Complex Pathway Simulator (Copasi) software v.4Hddqps

et al, 2006). The mass balances, the metabolites linitia
conditions, and the list of mathematical mechanistite
equations of the model can be found in the origiagler
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Fig. 1. Schematic network representation of the central
carbon metabolism (PTS glucose transport, glycslysid
pentose-phosphate pathway) &'. coli. Circular nodes
represent metabolites and italic names enzymes.
metabolites are inhibitors and blue metabolitesaateators.
For simplicity, only abbreviations of metaboliteda@nzyme
names are shown (see explicit enzyme and metaboktmes
in Chassagnolet al. (2002). The arrows indicate the reaction
reversibility.

Red

2.3 Model building using lin-log kinetics and caastt-
based approach

The lin-log representation is based on the notiat the rate
of reaction and enzyme levels are proportional jiéei,
2005; Visser and Heijnen, 2003). All the reactitwase the
same mathematical structure where the kinetic petens
appear linearily and are called elasticitie$, €2, ¢ andsy)
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and the effect of metabolites levels on the flugéscribed as and Curtiss, 1996). To convert the normalized fiixer

a term of linear sum of logarithms of the concetiures: example phosphoglucoisomerase (GEFF6P) we multiply

the conversion factox = 0.21mM s~1/100 by the relative

_ e B oo (S )., Pol & o (). & o (A experimental flux 62, where 100 corresponds toréiative
== 1 In| = In| % In| = In| —& . .

i e"{ +;£S” n[ $J+;€Pﬂ n{ F}’]Jr.;e" n[ !°J+;1£Ak n[ é\\"ﬂ normalized phoshotransferase system flux (see dsta for

(2) more detail). A similar conversion was performed 4t the

_ other fluxes. For each mutant strain a new conerrfactor
where r%is the reference flux and/e® represents the \was calculated.

relative enzyme activityS,/Sq, Pg/Pg, I;/I{ and A,/ AR are

the relative concentrations of the substrates, yrtsd 2.5 Including proteomic data in the model

inhibitors and activators, respectivehS nP, nl andnA are

respectively the total number of substrates, prtsducFor the mechanistic model, it is assumed that agéan the
inhibitors, and activators. The superscrip®s denote the protein level leads to a proportional change in rieximal

reference state (e.g., steady-state from wild-typEhe reaction rate\(,sy), according to the equation:

elasticity is defined as the scaled local partiativhtive of

the reaction rater) for the metaboliteQ): _
Vmax,jh - Iﬂ:at [E]jh (4)

C’ or, . . . y
& :_5_' (3) where Vimajn is the maximal reaction rate of reactiprat
' rj 5(3i experimental conditiorh , k., denotes a turnover constant

Thus, one single elasticity per metabolite is imeol in each @nd [E]; denotes the enzyme concentrations in the steady

state cultures. Thus, using thg@,,values for the reference

reaction. The elasticities in the lin-log model eeterived ! o !
from the mechanistic model according to equation, (3St&te (wild-type) and the fold change in vivo protein

assuming that the parameters are known. The statly-of Measurements of the corresponding enzyme Igiék®) for

the wild type was taken as the reference state.r¥havere ©ach enzymatic reaction, thé,., values of the knockout
estimated by flux balance analysis (FBA) that leshienefit Strains for all the reactions under the new coaditere

of not needing kinetic and experimental information calculated.l For the lin-log kinetic model, the oatif protein
FBA is a linear constraint based modelling apprdaased on concentration of an enzyme for the wild-tyge®) and
the maximization or minimization of an objectivenfion ~Mutant strainge) is directly given by the fold change from
under different constraints (Edwardst al, 2001). The in vivolshii data. For the reactions with more than oseeg
previously release&. coli stoichiometric model (Reed et al. @ssociated, we calculated the enzyme levels asndan of
2003) was used for all the analyses, containing510#he measured enzyme concentrations. On the otimef, frze
reactions catalyzed by 904 enzymes. Linear progiagm calculated the fol_d change of_ enzyme levels byayieg the
(LP) was used to obtain a steady-state flux distiim by Values for the neighbor reactions to overcome toélpm of
maximizing the objective function defined as thewgth rate. N0t having the enzyme concentrations experimentally
The only constraint was the glucose consumptioa (@21 Measured for all the biochemical reactions. _
mM s?, see below). The FBA computations were performefio compare with our approach, we simulate typical
employing the in-house developed software OptFRacha Kknockouts experiments by modifying the relative yene

et al, 2010) using the GNU linear programming packagievel (e/e®)™ ™ for the lin-log model of the participating
(GLPK — www.gnu.org/software/glpk) solver. knockout enzyme to 0% of its original value.

2.4 Experimental data 2.6 Measurement of prediction capabilities

The measured steady-state flux data and enzynY@rous measures, I.ike the.Manhattan distance,sthﬂar
concentrations levels were taken from the suppléangn Product or the Euclidean distance have been usethen
material of Ishii et al. (2007) obtained from chemostatliterature for measuring the prediction capabtite models.
cultures of E. coli K-12 wild-type and mutants grown in In this study we performed two set of analysesvaiuate the
glucose-limited conditions. Among the 24 single genoverall predictive fidelity and error between datsies.

disruption experiments, we focused on four singlaey The prediction accuracy of the constru_cted Im-lngdel is
disruptants: phosphoglucomuatsegif), transketolase B €valuated by calculating the mean relative erratafamaet
(tktb), 6-phosphogluconate dehydrogenaged) and aldolase al-, 2006):

(foaB).

Since the fluxes computed from the models wereesgad in S GG —C

mM s*, we converted the experimental fluxes from IsHii .2—1 12—1 , (5)
— ' 100

al. (2007) to these units. Thus, the flux through theMRE(%) =
phoshotransferase system (PEP + GLCE&6P + PYR) on

the wild type strain (dilution rate, D = 0.1%his 0.21 mM &,

since the specific glucose consumption rate is Ir8dol whereC;; is the concentration df" metabolite given by the

11 . . . .
gow M. This was obtained by taking the cell dry weight ag| mechanistic model an@'s; is the concentration given by
2.8x10°gpw and the cell volume as 4.960" L (Neidhardt '
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the constructed lin-log model at tiesampling pointtj; n is
the number of metabolites.

The Euclidean distance (Diggle, 1983), which cagsuthe
deviation between two points (computed steady-dtates
and the experimental ones) is given by:

m
— 2
D= \/z (Vj ,pred - Vj,exp)
=

(6)

where,V, preq is the flux ratio predicted computationally by the

lin-log model ands; e, is the experimental flux ratio for thi
reactionmis the number of the fluxes.

3. RESULTS AND DISCUSSION

We performed arin silico case study for exploring whether

the inclusion of high throughput protein concerntratdata
into a kinetic model can improve the predictive aaifity
after different genetic perturbations (i.e. predicetabolic
flux distributions changes in response to changezime
levels). To this goal, we constructed a specialiavdr of
approximate lin-log kinetic model of the centralrtoan E.
coli network.

3.1 Construction and validation of a special vatiaif lin-log
E. coli model

The system studied in this paper is the primaryatratsm
network ofE. coli taken from Chassagnod al. (2002). To
predict intracellular fluxes and metabolites throughe

model, with a small prediction error (Zhao and Kar&2009)
of 0.049 and 0.021, respectively.

By using the calculated elasticities and the stesdie fluxes
predicted by FBA, we defined the lin-log model syst(by
using equation 2) for the metabolic network undirdg
(Fig. 1). After these estimations, the approximaliedog
model was validated and used to simulate the dymami
behaviour after a glucose perturbation of 1.67mMeT
dynamic behaviour results indicate that the lin-lmgdel,
when compared with the reference mechanistic mduk,
ery good prediction levels during the 40 seconitisr ahe
glucose impulse for all the metabolites (data o). The
mean relative error (MRE) of all the 18 metabolitdxtained
after the perturbation is 24.2%. To complement riggults,
we also computed the prediction results for the steady
state fluxes distributions after the perturbatigncbmparing
both models. We obtained a good agreement betvese t
two models (data not shown). We found that the iptieah
error (Zhao and Kurata, 2009) is 0.017.

3.2 Prediction of flux changes for gene knockouts mistan
effect of enzyme level change in the metabolidikinetwork
of the E. coli metabolism

The key question addressed here is to demonstrete t
usefulness of the integration of protein concemratiata in
the constructed special variant of the lin-log niotie
accurately predict the metabolic flux response &magic
perturbations. There are some efficient mathematicalels
that use transcriptome or enzyme activities tonesté a
metabolic flux distribution (Kurat&t al., 2007; Akessonet

known reactions oE. coli central carbon metabolism, weal. 2004). However, from such methods, insight about

constructed a special variant of the kinetic lig-fnodel with
30 reactions, 18 metabolites and 7 co-metabolitassupport
the main carbon flows (Fig. 1). Since previous Esichave
shown the validity of lin-log kinetics with a lowaumber of
kinetic parameters and a satisfactory performanicehis

modelled molecular interactions cannot be obtalmetheans
of numerical simulation and computational analysesh as
metabolic control analysis (Hatzimanikatis and 8gil1996)
to identify metabolic engineering targets.

To simulate the knockouts mutant experiments withr o

nonlinear kinetics upon large changes in metatwlit@pproach, the relativim vivo enzyme levele/e?) for each
concentration, fluxes and enzyme activities (Nikexeal, reaction from Ishii data was integrated into theresponding
2006; Visser and Heijnen, 2003) we have chosen thigte laws of the kinetic model (see Methods forilig), and
approximated kinetic format. From equation 2, it t& seen used to simulate the changes of steady-state fluxes
that, to predict metabolite concentrations andeiualong the distributions. The resulting fold changes iof vivo protein

time, estimates are required for the parameteestieities).
Estimated elasticities are derived analyticallynmirohe full
mechanistic model at the reference state usingtiequa.
The total number of elasticities is 72. As showdsb an

levels associated with each reaction in the matkieata
model normalized to the wild type are calculated dine
range is 0.57-7.20, 0.20-1.67, 0.38-1.60 and 0.58-Zor
pgm tktb, gnd and fbaB knockout mutants, respectively.

equation 2, the variables are defined relativehtoreference Although the kinetic model can compute dynamic ceses,

steady-state. In this study, we use the experirhetéady-

here we focus solely on the steady-state solutioie.

state metabolites taken from the previously dewadop Systematically assessed the predictive capabilithelin-log

dynamic model forE. coli (Chassagnolet al, 2002) and
estimated steady-state fluxes from FBA, as referesteady
state.

FBA was applied to the genome-scdde coli network by
constraining only the specific glucose uptake rafed
defining the commonly used objective function, ithe
maximal biomass growth (Edwards and Palsson, 200).
steady state fluxes predictions of FBA do not diffeuch in
comparison with thén vivo fluxes from Ishiiet al. (2007) at
D = 0.1 h* and those predicted by the mechanigticcoli
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model by comparing the simulated data with itheivo flux
rates from'*C-experiments (Ishiet al, 2007) after genetic
perturbations and with the prediction results otstei with
the typicalin silico knockouts experiments (i.e. lin-log model
without integration of enzyme levelshhus, we can directly
compare their performance in terms of applicabiligd
prediction accuracy.
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35 ¢ metabolic fluxes for four different knockout mutsmgppgm),

X 3.0 + (a) pgm Knockout - (tktB), (gnq) and (baB) N

B 25 . The changes obtaineid silico for the steady state fluxes

k- :2 i @ 5 ® E distributions (expressed as the ratio of the knatko the

= | - g wild type flux) and the comparisons with various

FLO- @ 1] T &0

Eos L 5 * v ¥ ¥ experimental datasets are depicted in Fig. 2 a-d.

200 L To illustrate the improvements achieved regardimg t
0.5 - approximation between the predicted results and
W - 1 - o T~ . experimental data, we performed an analysis usimg t

S E2EETEZ%E22EF 5 2% 2 Euclidean distance for the predictiedsilico andin vivo flux
5 % Reaction = ~ 5 % 2 ratios solutions for each of the four knockout miga(Table

>0 (b) tkB Knockout 1). _ ]
s L . The plots and the associated measurement of thédEaie

& @ . . SOt e + o distance for the four.knoc_:kout mutants f[ested r‘e_aegpod

Zio B + W A e O lWm ¢ W O agreement with thein vivo results, with a significant

gos | 0,0 improvement of the performance of the lin-log mobglin

E o ‘.. . Vivo enzyme level data i_ntggration, when compared thith

200 model obtained by modifying only the enzyme leveltee

- respective  knockout reaction with(e/e%)™mutant = g
T E EE Rz i oEbk ks z o (Euclidean distance ranging from 1.15 to 2\ 1.75 to

SR Es 2T 2ZFE C 5T 24 % A 885respectvely). We thus conclude that theiivo enzyme
5o - '“ Reaction = @ = levels integration resulted in a significant in@ean the
‘ . (c) gnd Knockout predictive performance using approximate lin-logetics.

2 1.5 r

EIO 8 P o*e*e * ¢+ Table 1 Euclidean distance of the flux ratios of four

g ‘ ¢ B « B4 B4 ¢ B 8B knockout mutants oE. coli with experimental protein levels

Eost - - included in the lin-log kinetic model (ELI) or byadifying

E - * the enzyme level of the corresponding enzyme tot@%he

=00 r M 0w experimental data from Ishéit al (2007).

'0‘5 T T T T T T T T T T T T T T 1 A roach MUtant
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- £ % Reaction = = % 22 ELI 1.15 1.64 1.62 2.04
35 . (e/eH™""=0  4.87 2.20 1.75 8.85
3.0 + (d)/baB Knockout
2.5 r

™ L +* *

! coe "o ; 4. CONCLUSIONS

$ 10 | . —

2 (1)2 @ : ¢ A In the present work, we test the approach of caimgein

E 00t ] vivo enzyme levels to approximated lin-log kinetic miooe

E?g i the E. coli central carbon metabolism for predicting the

Tt steady-state behaviour in response to gene knoskde
e o T L - ... L. -2 have demonstrated that this strategy helps to imepthe
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