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∗ CESAME, Université catholique de Louvain, 4-6 avenue G. Lemâıtre
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Abstract: In this paper, we present an adaptive extremum seeking control scheme for fed-batch
bioreactors with Haldane kinetics. The proposed adaptive extremum seeking approach utilizes
the structure information of the process kinetics to derive a seeking algorithm that drives the
system states to the desired set-points that maximize the biomass production. It assumes that
only the substrate concentration is available for on-line measurement. Lyapunov stability is used
in the design of the extremum seeking controller structure and the development of the parameter
learning laws. The performance of the approach is illustrated via numerical simulations.
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1. INTRODUCTION

Fed-batch bioreactors represent an important class of bio-
processes, mainly in the food industry (e.g. yeast produc-
tion) and in the pharmaceutical industry (like the produc-
tion of the vaccine against the Hepatitis B) but also e.g.
for biopolymer applications (PHB). It is also very much
involved in the field of enzyme production which has been
developed over the past decade due to the recombinant
ADN technology and via the use of filamentous micro-
organisms.

One of the key issues in the operation of fed-batch reac-
tors is to optimize the production of synthesis product
(e.g. penicillin, enzymes, etc) or biomass (e.g. baker’s
yeast). They are therefore a priori ideal candidates for
optimal control strategies. An intensive research activ-
ity has been devoted to optimal control of (fed-batch)
bioreactors mainly in the seventies and in the eighties
(see e.g. [2][11][13][14]). Yet in practice, because of the
large uncertainty related to the modelling of the process
dynamics [1], poor performance may be expected from
such control strategies, and , although a priori attractive,
optimal control has not been largely applied to industrial
bioprocesses. Alternative approaches have been proposed
that are aimed at handling the process uncertainties with
an adaptive control scheme [3].

The task of extremum seeking is to find the operating set-
points that maximize or minimize an objective function.
Since the early research work on extremum control in
the 1920’s [10], several applications of extremum control
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approaches have been reported, e.g. [4][18][15]. Krstic et
al [7][8] presented several extremum control schemes and
stability analysis for extremum-seeking of linear unknown
systems and a class of general nonlinear systems [7][8][9].
The implications for the chemical and biochemical indus-
tries are clear. In these sectors, it is recognized that even
small performance improvements in key process control
variables may result in substantial economic benefits.

In this paper, we investigate an alternative extremum seek-
ing scheme for fed-batch bioreactors. The proposed scheme
utilizes explicit structure information of the objective func-
tion that depends on system states and unknown plant
parameters. The scheme presented in this paper is based
on Lyapunov’s stability theorem. As a result, the global
stability is ensured during the seeking of the extremum
of the nonlinear continuous stirred tank bioreactors. It
is also shown that once a certain level of persistence of
excitation (PE) condition is satisfied, the convergence of
the extremum seeking mechanism can be guaranteed.

A similar approach has been considered for a simple mi-
crobial growth model with Monod kinetics in continu-
ous stirred tank reactors [19]. In the present paper, we
consider a fed-batch reactor and the Haldane model as
the process kinetics model. The present approach results
in a structure of the extremum seeking algorithm which
is rather different. The innovative aspects of the present
extremum seeking controller are basically threefold. First,
the optimization problem to be handled is different : in
[19], the problem is to optimize the gas production rate
while in the present paper, the objective is to maximize
the production of biomass at the end of the fed-batch
operation. Secondly, the use of the Haldane kinetics model
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(typical of the kinetics in fed-batch bioreactors) induces
an increased complexity in the design and analysis of
the extremum seeking (although the complexity of the
extremum seeking controller remains similar).

The adaptive extremum seeking ontrol of fedbatch biore-
actors has also been addressed in [16][17] under the as-
sumption that both the susbstrate concentration and the
gaseous outflow rates are accessible for on-line measure-
ments. The third innovative aspect of this paper is that it
is shown here how to design the real-time optimizer when
only the substrate concentration is measured on-line. This
is performed by considering the on-line estimation of the
biomass concentration via an asymptotic observer.

The paper is organized as follows. Section 2 presents the
problem. In Section 3 the adaptive extremum seeking con-
troller is developed, and its stability and convergence prop-
erties are analyzed. Numerical simulations are presented
in Section 4 in order to illustrate the adaptive extremum
seeking performance.

2. PROBLEM FORMULATION

Consider the following dynamical model of a simple mi-
crobial growth process with one gaseous product in a fed-
batch reactor :

Ẋ = µX − uX (1)

Ṡ =−k1µX + u(S0 − S) (2)

V̇ = uv (3)

where states X (g/l) and S (g/l) hold for biomass and sub-
strate concentrations, respectively. µ (h−1) is the specific
growth rate, u (h−1) is the dilution rate, S0 (g/l) denotes
the concentration of the substrate in the feed, k1 is a yield
coefficient, and v (l) is the volume of liquid medium in
the tank. A typical situation in bioprocess applications is
when the biomass concentration is not available for on-
line measurement. That’s why we consider here that only
S is measurable while the biomass concentration X is not
available for feedback control.
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Fig. 1. Haldane Model

In this work, we consider the extremum seeking problem
for the bioprocess model (1)-(3) with a specific growth rate

µ expressed by the Haldane model. This model (see Figure
1) is given by the following equations :

µ =
µ0S

KS + S + S2

KI

(4)

where µ0 is a parameter related to the maximum value
of the specific growth rate as follows : µ0 = µmax(1 +

2

√
KS

KI
).The coefficients KS and KI denote the saturation

constant and the inhibition constant, respectively. The
Haldane model is a growth model commonly used in
situations where substrate inhibition is important. This
situation is typical of fed-batch bioprocesses. The control
objective is to design a controller, u, such that the biomass
production X achieves its maximum at the end of the
fed-batch operation. It is well-known (e.g. [1]) that the
maximization will be completed if the specific growth rate
is kept at its maximum value :

S∗ =
√
KSKI (5)

From the above considerations, we know that if the sub-
strate concentration S can be stabilized at the set-point
S∗ then the production of biomass is maximized. However,
since the exact values of the Haldane model parameters
KS , µ0 and KI , are usually unknown, the desired set-point
S∗ is not available. In this work, an adaptive extremum
seeking algorithm is developed to search this unknown
set-point such that the biomass production at the end of
the reactor operation, i.e. v(tf )X(tf ) (with v the reactor
volume and tf the final time of the fed-batch operation) is
maximized.

In the technical developments here below, we shall consider
the following assumption for the parameters KS and KI

of the Haldane model.

Assumption : KS and KI are known to be bounded as
follows : KS,min ≤ KS ≤ KS,max, KI ≤ KI,max.

This assumption is only important for the technical devel-
opments in order to avoid singularities in the extremum
seeking controller.

3. ESTIMATION AND CONTROLLER DESIGN

The design of the adaptive extremum seeking controller
will proceed in different steps. First of all, we shall
start with the estimation equation for S, then include
the controller equations and the estimation equations for
the unknown parameters in a Lyapunov based derivation
framework, and end up with the stability and convergence
analysis that includes the selection of appropriate design
parameters in order to guarantee the convergence to the
optimum.

3.1 Estimation equation for the subtstrate concentration S

Let us first consider the state transformation [1] :

Z = k1X + S (6)

Let θ = [θS θµ θI ]
T with θµ =

µ0

KS
, θS =

1

KS
, θI = 1

KIKS
.

Then equations (1)(2) can be reformulated as follows :
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Ż = u(S0 − Z) (7)

Ṡ =− θµS

1 + θSS + θIS2
(Z − S) + u(S0 − S) (8)

Let θ̂ denote the estimate of the true parameter θ, and Ŝ
be the prediction of S by using the estimated parameter

θ̂. The predicted state Ŝ is generated by :

˙̂
S =− θ̂µS

1 + θ̂SS + θ̂IS2
(Z − S) + u(S0 − S) + kSeS (9)

with kS > 0 and the prediction error eS = S − Ŝ. This
equation will the driving term for the estimation of the
three unknown parameters θµ, θS and θI in an observer-
based estimator framework [1].

It follows from (8)(9) that the estimation error on S follows
the following dynamics :

ėS =−kSeS −
θµS

1 + θSS + θIS2
(Z − S)

+
θ̂µS

1 + θ̂SS + θ̂IS2
(Z − S) (10)

3.2 Design of the adaptive extremum seeking controller

The desired setpoint (5) can be re-expressed as follows :

S∗ =
1√
θI

Since the parameter θI is unknown, we design a controller
to drive the substrate concentration S to

1√
θ̂I

that is an estimate of the unknown optimum S∗. An excita-
tion signal is then designed and injected into the adaptive

system such that the estimated parameter θ̂I converge to
its true value. The extremum seeking control objective
can be achieved when the substrate concentration S is
stabilized at the optimal operating point S∗.

Define

ws = Ŝ − 1√
θ̂I
− d(t) (11)

where d(t) ∈ C1 is a dither signal that will be assigned
later. Note that ws corresponds of the sum of an image of
the control error (the second term would be exactly the

desired point if θ̂I = θI) and of the dither signal.

The time derivative of ws is given by :

ẇs =− θ̂µS

1 + θ̂SS + θ̂IS2
(Z − S) + u(S0 − S) + kSeS

+
1

2
θ̂
− 3

2

I

dθ̂I
dt
− ḋ(t) (12)

We consider a Lyapunov function candidate :

V =
w2
s

2
+

1

2

(
θ̃2µ
γµ

+
θ̃2S
γS

+
θ̃2I
γI

)
+ (1 + θSS + θIS

2)
e2S
2

with constants γµ, γS , γI > 0.

Let us consider the following dynamic state feedback :

ḋ(t) = a(t) +
1

2
θ̂
− 3

2

I

dθ̂I
dt
− kdd(t) (13)

u(t) =
1

S0 − S

[
−kwws +

θ̂µS(Z − S)

1 + θ̂SS + θ̂IS2
+ a(t)

−kdd(t)] (14)

with a(t) a dither signal and kd and kw strictly positive
constants, and the following parameter update law :

˙̂
θi =

{
γIΨI , if θ̂I > εI or θ̂I = εI and ΨI > 0
0 otherwise

(15)

˙̂
θs =

{
γSΨS , if θ̂S > εS or θ̂S = εS and ΨS > 0
0 otherwise

(16)

˙̂
θµ = γµΨµ (17)

with the initial conditions θ̂S(0) ≥ εS =
1

KS,max
> 0, and

θ̂I(0) ≥ εI =
1

Ks,maxKI,max
> 0, and :

ΨI = eS
θ̂µS

3(Z − S)

1 + θ̂SS + θ̂IS2
− e2S

2
(2kSS

2 − 2uS(S0 − S))

ΨS = eS
θ̂µS

2(Z − S)

1 + θ̂SS + θ̂IS2
− e2S

2
(2kSS − u(S0 − S))

Ψµ =−eSS(Z − S)

The update laws (15)(16) are projection algorithms that

ensure that θ̂S(t) ≥ εS > 0 and θ̂I(t) ≥ εI > 0. They also
ensure that :

(ΨI −
˙̂
θI
γI

)θ̃I + (ΨS −
˙̂
θS
γS

)θ̃S + (Ψµ −
˙̂
θµ
γµ

)θ̃µ ≤ 0 (18)

It is also worth noting that the structure of the controller
(14) is that of an adaptive linearizing controller (the first
two terms divided by the denominator) [1] to which terms
related to the dither signal have been added.

3.3 Stability and convergence analysis

The stability and convergence analysis of the fedbatch re-
actor coupled to the adaptive extremum seeking controller
follows arguments to those considered in [17].

By considering (13)-(17), it is routine to check that the
time derivative of the Lyapunov function candidate is
bounded as follows :

V̇ ≤ −kww2
s + Γ + kSeSwS (19)

with :

Γ =−e
2
S

2

(
2kS(1 + θ̂SS + θ̂IS

2)− (θ̂S + 2θ̂IS)u(S0 − S)
)

−e
2
S

2

(
θµS(θS + 2θIS)

1 + θ̂SS + θ̂IS2
(Z − S)

)
(20)

By completing the squares, we have :

kSeSwS =
α

2
k2Se

2
S +

1

2α
w2
S −

(√
α

2
kSeS −

1√
2α
wS

)2

(21)
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with α > 0. Therefore an upper bound on kSeSwS is given
by :

kSeSwS ≤
α

2
k2Se

2
S +

1

2α
w2
S (22)

Therefore the time derivative of V can be bounded as
follows :

V̇ ≤−w2
s

(
kw −

1

2α

)
− e2S

2

(
θµS(θS + 2θIS)

1 + θ̂SS + θ̂IS2
(Z − S)

)
−e

2
S

2

(
−αk2S + 2kS(1 + θ̂SS + θ̂IS

2)

−(θ̂S + 2θ̂IS)u(S0 − S)
)

(23)

In order to have the time derivative of V to be negative,
we must have kw > 1

2α and α such that the expression
between brackets in the third term of the right hand side of
the above inequality (23) is positive. The latter condition
is fulfilled if :

ρ = (1 + θ̂SS + θ̂IS
2)2 − α(θ̂S + 2θ̂IS)u(S0 − S) > 0

i.e. if :

α <
(1 + θ̂SS + θ̂IS

2)2

(θ̂S + 2θ̂IS)u(S0 − S)
(24)

Then the roots of the expression between brackets in the
third term of the right hand side of the inequality (23) are
equal to :

k
′

S =
(1 + θ̂SS + θ̂IS

2)±√ρ
α

(25)

Since
√
ρ < (1 + θ̂SS + θ̂IS

2), we have two positive
roots. Therefore any value of kS between these two values
guarantees that the expression between brackets in the
third term of the right hand side of the above inequality
(23) is positive. We finally have :

V̇ ≤ −λ1w2
s − λ2e2S , λ1 > 0, λ2 > 0 (26)

Following LaSalle-Yoshizawa’s Theorem, it can be con-

cluded that θ̂, ws and eS are bounded, and

lim
t→∞

ws = 0, lim
t→∞

eS = 0 (27)

This implies that :

lim
t→∞

˙̂
θI(t) = 0, lim

t→∞
˙̂
θS(t) = 0, lim

t→∞
˙̂
θµ(t) = 0

Hence, the auxiliary variable d(t) is bounded if a(t) is
bounded and d(t) tends to zero if a(t) does. Thus all
signals of the closed-loop system are bounded. It should
be noted that the convergence of the state error eS does
not mean that the estimated parameters converge to their
true values as t→∞. In the following, we investigate the
condition that guarantees the parameter convergence.

By LaSalle’s Invariance Principle, the error vector (ws, eS , θ̃)
converges to the largest invariant set M of the dynamic
system (10) and (15)-(17) contained in the set E =

{(ws, eS , θ̃) ∈ R5|ws = eS = 0}. Since eS converges to
zero, we know that

∫∞
0
ėSdt = eS(∞) − eS(0) = −eS(0).

This implies that ėS is integrable. It follows from the error

equation (10) that ëS is a function of Z, S, Ŝ, θ̂, d and

its time derivatives. Since θ̂, eS ∈ L∞, and the excitation
signal d and ḋ are bounded, we know that ëS is bounded.
This implies the uniform continuity of ėS . By Barbalat’s
Lemma [5], we conclude that ėS → 0 as t→∞.

On the invariant set M , we have eS ≡ 0 and ėS ≡ 0. By
setting eS = ėS = 0, equation (10) leads to

θ̃TΦ(S,Z, θ̂, u) = 0, (ws, eS , θ̃) ∈M (28)

where

θ̃= [θ̃I θ̃S θ̃µ]T (29)

Φ(S,Z, θ̂, u) =

−(1 + θ̂SS + θ̂IS
2)

θ̂µS

θ̂µS
2

 (30)

It follows from (28) that ∀(ws, eS , θ̃) ∈M

θ̃TΨ(t)θ̃ = θ̃TΦ(S,Z, θ̂, u)ΦT (S,Z, θ̂, u)θ̃ = 0 (31)

As a result, if the dither signal d(t) is designed such that
the following condition holds

lim
t→∞

1

T0

t+T0∫
t

Ψ(τ)dτ ≥ c0I (32)

for some c0 > 0, then, the parameter error θ̃ converges to
zero asymptotically.

3.4 The asymptotic observer

In the above developments and analysis, we have assumed
that Z is perfectly known. However, since the biomass
concentration X is assumed to be unknown, an asymptotic
observer [1] is used to provide an on-line estimate of Z :

˙̂
Z = u(S0 − Ẑ) (33)

Considering the definition of Z (6) we readily obtain an
on-line estimate of the biomass concentration X :

X̂ =
Z − S
k1

(34)

The estimation error eZ(= Z − Ẑ) dynamics is therefore
given by the following expression :

ėZ = −ueZ (35)

which shows that eZ tends asymptotically to zero. One
potential drawback of the asymptotic observer is that there
is no tuning parameter for the convergence rate. Yet it
is worth noting that in fedbatch processes, the biomass
concentration typically follows large variations (ideally, an
”exponential” growth). Therefore apparently large initial
error on the (usually small) initial value of the biomass
is more likely to result in negligible error by the end of
the fedbatch operation even in presence of apparently low
convergence rate.

The stability and convergence properties of the asymptotic
observer (33) coupled to those of the adaptive extremum
seeking controller presented above guarantee that the
substrate concentration will converge to its optimal value
in the fedbatch bioreactor.

Copyright held by the International Federation of Automatic Control 111



4. SIMULATION RESULTS

The performance of the adaptive extremum seeking con-
troller have been tested in a number of numerical simula-
tions, performed using a realistic example of a fed-batch
process. The kinetic model parameters, yield coefficients
and initial states used during numerical simulations are:

µ0 = 0.53h−1, KS = 1.2 g/l, KI = 0.22 g/l, k1 = 0.4

X(0) = 7.2 g/l, S(0) = 2.5 g/l, S0 = 20 g/l (36)

For the Haldane model, from Figure 1, the maximum on

the growth specific rate occurs at S∗ =
1√
θi

= 0.52 g/l.

The control objective is to design a controller for the
dilution rate, u, to regulate the substrate S at S∗. The
controller requires on-line measurements of the variable
S as well as the knowledge of the kinetic parameters,
determining the S∗. These values are obtained using the
estimation algorithm previously presented, through the
measurements of S.

For the simulation study, we consider the following initial

estimates of the kinetic parameters : θ̂µ = 1, θ̂S = 0.1,

θ̂I = 1.5 (µ̂0 = 10, K̂S = 10, K̂I = 0.0067). The design
parameters for the extremum-seeking controller are set to :
γµ =, γS = 10, γi = 50, kw = 1, kd = 1, α = 0.1. The
dither signal a(t) is chosen as follows :

a(t) =

5∑
i=1

A1isin

(
(0.001 + (5− 0.001)i/4)t

)

+

5∑
i=1

A2icos

(
(0.01 + (5− 0.01)i/4)t

)
(37)

where A1i and A2i are normally distributed random num-
bers in the interval [-0.1,0.1].

The performance of the extremum seeking control scheme
is illustrated in Figures 2-6. We consider the initial condi-
tions, X̂(0) = 7.2 and Ŝ(0) = 2.0. It is shown from Figure
5 that the extremum seeking scheme converges to the
intended growth rate value. The substrate concentration
(Figure 2) converges to the unknown optimum as well. The
dilution rate manipulation resulting from the extremum-
seeking control is also shown in Figure 3. Convergence of
the kinetic parameters to their true values is shown in Fig-
ure 6. Note that after a fast convergence close to the true
parameter values, the subsequent convergence is slower
without any major negative effect on the convergence of
the substrate concentration S to its optimal value. Overall,
the extremum-seeking is shown to perform satisfactorily
for this case.

5. CONCLUSIONS

We have solved a class of extremum seeking control prob-
lems for fed-batch bioreactors with Haldane kinetics. The
proposed extremum seeking controller drives the substrate
concentrations to unknown desired set-points that opti-
mize the biomass production rate. A persistence of exci-
tation condition is derived to ensure the convergence of
the production rate of the bioreactor to a neighborhood of
its maximum. The performance of the adaptive extremum

Fig. 2. Simulation results : the substrate concentration S

Fig. 3. Simulation results : the dilution rate u

Fig. 4. Simulation results : the biomass concentration X
and its on-line estimate X̂ (dotted line)
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Fig. 5. Simulation results : the on-line estimate of the
specific growth rate µ̂ (dotted line)

Fig. 6. Simulation results : θ̂I , θ̂S , θ̂µ (true values in dotted
lines)

seeking algorithm has been illustrated on a fed-batch pro-
cess model.
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