Lehrstuhl für Fluidverfahrenstechnik, Ruhr-Universität Bochum/D

Two phase flow in micro separation

technology (Extraktion, Absorption, Distillation)

Stabilization of the

interfacial area

Surface conditioning of

Falling films in micro

Phase-Equilibrium

Gibbs' Phase rule

F = K - P + 2

channel walls

Jähnisch et. al., Journal of Fluorine Chemistry 105 (2000) 117-128

Connecting

co-current modules

separation of dispersions

Generation and

or segmented flow

Pressure drop

in micro-

channels

ProcessNet JT 2008

Spatial separation of both

Chem. Eng. J. 101 (2004) 49-56.

Temperature &

concentration

gradient

Porous structures

Membranes

4

# Process design for micro-structured distillation devices





• two fluid channels (interface stabilized by surface forces)

Micro-distillation devices presented in the last years:

• two fluid channels (interface stabilized by capillary forces)

#### Advantages of micro-structured devices:

- high efficiency
- small hold-up
- modularity

#### **Questions not answered:**

- operating limitations
- mass transport limitations



#### Rigorous process model:

- mixture of two substances
- steady state calculation
- laminar flow in both channels
- no-slip condition
- adiabatic conditions
  - → temperature gradient along membrane
  - → similar evaporation enthalpy
  - → constant total mole flow



### **Limitations for liquid flow:**

- small temperature rise → no limitation
- upper bound
  - → residence time (diffusion vs. channel height)
  - → utilisation of membrane length
- lower bound
  - → economic efficiency (throughput vs. capital cost)

| $\dot{m}_{Lin}$ [g/h]                             | 288  | 288   | 288   | 288   |
|---------------------------------------------------|------|-------|-------|-------|
| <i>m</i> <sub>V in</sub> [g/h]                    | 21,6 | 64,8  | 108   | 216   |
| $\dot{m}_{\scriptscriptstyle membran~EtOH}$ [g/h] | 4,19 | 12,19 | 19,50 | 31,69 |
| $\Delta T$ [K]                                    | 1,26 | 3,73  | 6,56  | 16,82 |
| ∆p <sub>manibran max</sub> [bar]                  | 0,25 | 0,36  | 0,47  | 0,82  |

#### **Limitations for vapour flow:**

x + dx

**J**i,diff

- upper bound
  - $\rightarrow$  temperature rise (max.  $\Delta T$  of device )
  - $\rightarrow$  pressure drop ( $\Delta$ p vs. capillary pressure of membrane)



#### concentration decreases <u>D</u> 100 pressure decreases temperature two phase zone inlet increases Pressure [bar] outlet 0.001.00 **Concentration of Ethanol** [mol/mol]



## Consequences for process design:

- pressure drop limits mass transfer
- pressure drop depends on geometries
- pressure drop per module limited
- stepwise increase of pressure for defined distillation task

#### Phase-equilibrium at membrane:

- pressure drop fixed by channel geometrie
- concentration fixed by mass transfer
- temperature fixed by Gibbs' phase rule
- no degree of freedom