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Fuel additives

o Tertiary ethers are important additives in gasoline to:
- Enhance the octane number
- Improve combustion
- Reduce emissions

 Methyl-tert butyl ether (MTBE) is the most common ether used in ga-
soline blending, but:

- Insufficient supply of Isobutene (limiting reactant in the MBTE syn-
thesis)

- Groundwater pollution (high solubility of MTBE In water)

 The production of other oxygenated compounds, such as tert-amy!l
ethyl ether (TAEE) Is of present interest, due to:

- Low solubility in water
- Removal of reactive olefins from fluid catalytic cracking (FCC)

Experimental setup?

Experimental column setup

Height of reactive section [m] | 1 (KATAPAK SP11 with Amberlyst 47
Height of stripping section [m] 2 (MELLAPAK 750Y)

Height of rectifying section [m] 1 (MELLAPAK 750Y)
Column diameter [mm] 200

Feed location Bottom of the reactive section
Feed rate [mol/h] 380

Pressure [bar] 4

Reflux ratio 1.71

D/F (mol/mol) 0.79

.,__. IA + EtOH

FCC stream
+ EtOH

Figure 1: TAEE pilot plant
> TAEE

Model validation

 Excellent agreement between experiments and simulation ( Fig. 2)
 No ethanol and isoamylenes are present in the bottom

 Low mole fraction of TAEE in the bottom (~23 mole %)
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Figure 2: Composition profiles in the liquid phase
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Chemical system

« TAEE Is synthesized by the reactions between the two isomers
2-methyl-1-butene (2M1B) and 2-methyl-2-butene (2M2B) with
ethanol (EtOH)

2M1B Exothermic
\ — Reactive
EtOH + TAEE

Equilibrium distillation

/ limited

o Stream from FCC was taken as a source of isoamylenes (1A)
 More than 100 components and at least 20 azeotropes
 Examples of side reactions:

2M2B

2M2P + EtOH — THEE Formation of tert-hexyl ethyl ether (THEE)

2°2M1B =————p Dimers

2*9M2B > Dimers Dimerization of isoamylenes

Model assumptions

 Non-equilibrium stage model based on the Maxwell-Stefan ap-
proach

 Pseudohomogeneous (reaction only in the liguid phase)

 Non-idealities of the liquid phase were described with the UNIFAC
method

 Hydrodynamics and mass transfer were taken into account by us-
ing packing specific correlations!® ®: ¢l

18 components and 6 reactions are considered (TAEE synthesis,
dimerization of isoamylenes and formation of THEE)

e Kinetics were taken from literaturel®!

 An existent model® in Aspen Custom Modeler® was modified in
order to consider the TAEE synthesis
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Simulation studies

« Optimal operating conditions were found to obtain the highest con-
version (around 40%) for the investigated column configuration

« Multiplicity of steady states was found
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Figure 3: Influence of operating parameters on conversion and selectivity. Pressure = 3
bar, RR = 1.84, D/F = 0.62 (mol/mol), Ratio EtOH/IA =1.16 (mol/mol)
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