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Abstract 
This contribution deals with the optimization of the design of reactive distillation 
columns by using a memetic algorithm (MA) which is a combination of an evolution 
strategy (ES) and a mathematical programming (MP) solver. The standard 
approach to solve such problems is to formulate them as large MINLPs but then 
the computational effort needed for the solution process grows substantially if the 
number of discrete variables increases, e.g. if a restriction on the number of feeds 
is introduced. Another problem is that the nonlinear solvers only provide a single 
local optimum. The MA overcomes this problem by addressing the optimization of 
the discrete and the global search in the space of the continuous design variables, 
while continuous sub-problems are efficiently solved by an MP solver. A 
comparison of the results of this new approach with results of commercial MINLP 
techniques shows that the MA can efficiently handle the global design optimization 
problem at hand and that it is the only algorithm that found the global solution if the 
number of discrete variables increases. 
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1. Introduction 
A current trend in process design is towards integrated processes, i.e. the integration of reactive and 
separating functionalities into a single apparatus as, e.g., a reactive distillation column. Compared to 
the classical serial arrangement of unit operations, this advanced concept has the potential to 
decrease the dimensions of the equipment and to increase the degree of heat integration. 
Furthermore, it provides the opportunity to overcome chemical and thermodynamical boundaries, such 
as chemical equilibria or distillation boundaries due to azeotropes. Separations of non-ideal mixtures 
with simultaneous chemical reactions belong to the most difficult design problems and should be 
solved in an integrated fashion. The design of a reactive distillation column constitutes a constrained 
mixed combinatorial optimization problem which is amenable to MINLP techniques. In practice, such 
problems are often hard to solve due to non-linear and integrality constraints and the nonconvexity of 
the continuous sub-problems.  
 
In our previous work1,2, the optimization-based design of reactive distillation columns was addressed 
by using MINLP techniques. The solution procedure is based on a decomposition of the MINLP 
problem into an IP-master-problem (optimization of the number of trays and of the location of the feed 
streams) and NLP-sub-problems (optimization of continuous variables for fixed discrete variables). In 
order to reduce the complexity of the problem, the number of feed trays was fixed to two. The 
nonconvex continuous sub-problems were tackled by a combination of the scatter-search based multi-
start algorithm OQNLP and the local NLP solver CONOPT. The IP-master-problem was addressed by 
the branch and bound solver SBB. The application of decomposition based procedures lead to better 
performances than approaches without decomposition3. 
 
An extension of the model by a variable number of feeds that may lead to better results than fixing the 
number of feed trays to only two substantially increases the computational effort that is needed for the 
solution. In case of the decomposition based approach described above, the complexity of the IP-
master-problem and the number of NLP-sub-problems increase depending on the maximum number 
of feed streams. These models are too complex to be solved to global optimality by the use of multi-
start algorithms in reasonable time1. Recently4, a memetic algorithm (MA) for the global solution of 
reactive distillation problems without restrictions on the number of feeds was introduced. By the use of 
this method, the computational effort needed for a local search of the continuous design optimization 
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without restrictions on the number of feeds and for a fixed number of trays could be reduced by 75% in 
comparison to the reference algorithm (OQNLP/CONOPT). The MA consists of an evolutionary 
algorithm (EA) and the mathematical NLP solver CONOPT. The EA generates initial points for the 
local solver. It works in the space of the design variables whereas the state variables of the column 
designs are computed by the same solver that performs the local optimization. This concept was 
successfully extended by a restriction on the number of feed streams for each feed5.  
 
In this work, both variants of the MA, i.e. the approach with restrictions on the number of feeds 
(MAMINLP-CF) and without (MAMINLP), are extended to the optimization of the number of trays. In order to 
exploit the ability of EAs to handle integrality constraints and discontinuous cost functions and the 
ability of mathematical programming (MP) methods to efficiently solve large continuous problems 
locally, the EA addresses the optimization of the design variables of the problem, including all discrete 
variables, i.e. the number of trays and the number and the location of the feed streams, whereas the 
NLP solver is used to solve the continuous sub-problems which arise by fixing all discrete variables. 
The results of the MAs are compared to the results of the commercial solvers OQNLP/CONOPT, 
SBB/CONOPT and SBB/OQNLP/CONOPT that serve as references. The reference algorithms 
optimize the model of the superstructure in which the number of trays and the location of the feed 
streams are modeled by binary variables. Design problems of reactive distillation columns have also 
been addressed by stochastic algorithms, but applications of evolutionary algorithms are very few, 
e.g.6. 
 

2. The case study 
As a case study, the optimization-based design of a reactive distillation column for the production of 
MTBE from isobutene and methanol (IB + MeOH ↔ MTBE) in the presence of n-butane at a pressure 
of 8 bar is considered. The reaction is kinetically controlled, equilibrium limited and heterogeneously 
catalyzed. The substance system exhibits 3 binary azeotropes: MeOH/MTBE, MeOH/IB and 
MeOH/butane. The desired purity of the product is 99 mole-%. The total amount of the feed streams is 
fixed (F1,tot = 6.375 mole/s MeOH, F2,tot = 8.625 mole/s IB/n-butane). Structural and operational 
parameters - e.g. the number of trays and the reflux ratio - have to be determined such that the annual 
profit of the column is maximized.  
 
The model of the tray column is based on the MESH equations (material balance, equilibrium 
condition, summation condition, enthalpy balance) which are extended by reaction terms3. The non-
ideality of the behavior of the mixture is described by activity coefficients that are calculated by 
Wilson’s approach. All thermodynamic parameters are taken from7. The reaction kinetics are based on 
activities, the temperature dependency of the kinetic constants is given by an extended Arrhenius 
approach and the temperature dependency of the vapor pressure is modeled by the Antoine equation. 
A Murphree stage efficiency for the vapor phase reflects the non-ideality of the separation 
functionality. The superstructure of the process comprises N = 60 trays of which only a subset may be 
included in the optimal solution. The inclusion of a certain tray k is coded by a binary activation 
variable ϕk (1 indicates activity and 0 indicates inactivity). The reboiler and the condenser are modeled 
as trays without reaction. Inactive trays are moved to the top of the column. The objective is to 
maximize the annual profit which is calculated by the annual revenues for the products minus the 
annualized investment cost, annual operating cost and annual cost for raw materials. The investment 
cost are calculated by heuristic functions for the cost of the column shell, the internals, the catalyst, 
the condenser and the reboiler; the operating cost is calculated by the heat loads for heating and 
cooling. 
 
The set of design variables consists of the amounts of both feeds i = 1, 2 on the trays k = 1, ..., N 
denoted by Fi(k), the amounts of catalyst on the trays k = 2, ...,N −1  denoted by Ecat(k), two variables 
αtop and αbottom ∈ (0, 1) for the reflux ratio at the top and the ratio of the evaporation rate to the product 
removal at the bottom of the column and the binary activation variables ϕk for the trays k = 2, …, N – 1. 
The models consist of a large number of algebraic equations formulated in the modeling language 
GAMS. Different models are used for the different algorithms (MTBEMINLP, MTBEMINLP-CF, MTBENLP, 
and MTBESim). The sizes of the models are given in Table 1.  
 
 2.1 MTBEMINLP  
MTBEMINLP is the model of the superstructure of the MTBE column as described above without 
considering restrictions on the number of feeds. It is assumed that fractions of both feed streams can 
enter the column on each tray including the reboiler and the condenser. Except of the N - 2 = 58 
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Figure 1. Structure of the memetic algorithm 

 

binary activation variables ϕk all variables of the model are continuous. For a more detailed description 
of the model see1,2.  
 
2.2 MTBEMINLP-CF  
MTBEMINLP-CF is the extension of the model MTBEMINLP by a restriction on the number of feed streams. 
For each feed i = 1, 2 and each tray of the column k = 1, …, N a binary variable δi,k indicates if a 
fraction of feed stream i enters the column on tray k (δi,k = 1) or not (δi,k = 0).  A maximal number of 
three feed streams nFi

max for each feed i is imposed by the following inequality: 

 ∑
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Additional constraints in the model ensure, that there can only be feeds on active trays of the column 
and that there is only feed i on tray k if δi,k equals 1. By restricting the number of feeds per stream to a 
maximum of three the number of discrete variables increases to 3N – 2 = 178. 
 
2.3 MTBENLP  
MTBENLP is the model of the continuous sub-problems which arise by fixing all discrete variables of 
MTBEMINLP. The maximal number of trays N is fixed to a value between 10 and 60 and all of these 
trays are active. Hence, the size of the model depends on N.   
 
2.4 MTBESim 
MTBESim, also denoted as the simulation model, is the model used to determine the values of the 
model variables that correspond to a certain column design. It comprises a subset of the equations 
and of the inequalities of the optimization model MTBENLP. The design variables here are removed 
from the set of free variables, and the equations and the inequalities that restrict the feasible values of 
the design variables are removed from the set of constraints as well. 
 

Table 1. Model sizes 

 MTBEMINLP MTBEMINLP-CF MTBENLP MTBESim 

binary variables 58 178 - - 
continuous variables 9134 9134 152N + 14 149N + 4 
constraints 9430 9552 155N + 14 149N + 4 

 

3. The memetic algorithm 
Memetic algorithms4,5,8 are hybrid evolutionary algorithms coupled with local refinement strategies. In 
this work, an evolution strategy9 (ES) which is a special variant of an EA is used. ES are designed for 
continuous search spaces and have a special feature: the strategy parameters, e.g. the parameters to 
determine the mutation strength, are adapted during the search (self-adaptation).  
 
3.1 Structure of the memetic algorithm 
The structure of the memetic algorithm used 
here is depicted in Figure 1. The optimization 
procedure starts with a feasible random 
initialization of the first population. In order to 
evaluate the µ  individuals of the population, the 
corresponding model variables are computed 
by CONOPT by solving the simulation model 
MTBESim. The resulting point in the space of all 
variables represents a possible column design 
which is used as a starting point for the local 
optimization in the space of all continuous 
variables. This local search is also performed 
by CONOPT based upon the model MTBENLP. 
According to the evolutionary model of 
Lamarck, the genes of the individuals are 
replaced by the values of the design variables 
of the corresponding local optimum. As long as 
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Figure 2. Tray-by-tray assignment of 

the variables F1, F2 and Ecat 

no feasible column design with N trays is found, all model variables within the simulation model are 
initialized with the value 1. During the subsequent optimization, the values of the model variables of 
the nearest feasible point found so far (measured by the Euclidean norm) are used as initial values. In 
previous work4 it could be shown that the use of this initialization procedure can significantly reduce 
the computational effort that is needed for the simulation. The generation cycle of the ES starts with a 
random selection of λ individuals for the reproduction. These individuals are mutated as described in 
Section 3.3 and become offspring individuals which are evaluated in the same manner as the 
individuals of the initial population. Then the population for the next generation cycle is selected by 
choosing the µ best individuals out of the set of offspring and parent individuals which do not exceed a 
maximal ‘life-span’ of κ generations. This selection procedure, called the (µ, κ, λ)–selection, is typically 
used in ES. The generation cycle stops if a predefined termination criterion is fulfilled e.g. a time limit 
or a generation limit. 
 
3.2 Representation of the individuals 
In evolutionary strategies, individuals are represented by a vector that represents the object variables 
of the optimization problem (here: the design variables) and a strategy parameter vector. In case of 
the optimization without restrictions on the number of feeds (MAMINLP) the genes of an individual are 
given by the integer variable N that represents the number of trays and by the continuous design 
variables described in Section 2. In order to avoid the existence of redundant variables and to reduce 
the size of the model of the continuous sub-problems, a representation is chosen that allows 
individuals of different sizes (depending on the number of trays N) to be members of the same 
population. Thus the binary activation variables ϕi,k are not required. The strategy parameter vector 
contains one step size parameter for the mutation of the number of trays N, one for the amounts of 
feeds for each feed i, N - 2 parameters for the amount of catalyst on the trays and two for the 
parameters αtop and αbottom.  
 
In case of the formulation MAMINLP-CF, the vector of object variables is extended by the discrete 
variables noFi that represent the number of feed streams per feed and by two vectors indFi with noFi 
distinct discrete elements g ∈ {1, …, N} that represent the indices of the feed trays for feed i. The 
extended strategy parameter vector contains four additional parameters: one parameter for each 
variable noFi and one for each vector indFi. The maximal number of feeds per stream is three. 
 
3.3 Initialization 
The size of the object variable vector depends on the number of trays N. Therefore, the number of 
trays is chosen first which is done randomly with a uniform distribution within the range of 10 to 60. In 
case of the formulation (MAMINLP), the continuous design variables are chosen next. This is done 
randomly within their bounds and respecting the constraints defined on the design variables, i.e. the 
fixed sum of the total amount of feed i. In case of the formulation (MAMINLP-CF), the number of feed 
streams for each feed (noFi) and the noFi locations of these streams have to be chosen before the 
continuous variables can be initialized. After the choice of the feed locations, the amounts of feeds on 
all other trays are fixed to zero. These variables are also fixed in the model MTBENLP which is used by 
the local solver. For more information see5. 
 
3.4 Mutation 
In evolution strategies, the mutations of the strategy 
parameters and of the object parameters are done 
consecutively. The strategy parameters are mutated first. In 
this work, reflection is used to avoid that a parameter 
exceeds its feasible domain. Because of the variable-length 
representation of the individuals, the mutation is done in a 
hierarchical fashion. First, the strategy parameter of the 
number of trays is mutated by the standard mutation 
operator for continuous variables9 followed by the mutation 
of N which is done by the use of the mutation operator for 
integer search spaces10, here denoted as mutI. If the 
number of trays does not change during the mutation 
procedure (i.e. mutI(N) = N) the mutation operator 
developed for a fixed number of trays4,5 is applied. In case 
of a change in the number of trays (mutI(N) ≠ N), the size of 
the offspring differs from the size of the parent individual. 
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The mutation takes place by assigning the F1, F2 and Ecat variables from trays of the parent individual 
to trays of the offspring. In Figure 2, the tray-by-tray mutation procedure of the object variables is 
illustrated.  
 
If N is greater than mutI(N) (see Figure 2a), mutI(N) distinct tray indices jn ∈ {1, …, N} with 
n = 1, …, mutI(N) are chosen randomly. Then they are sorted and the variables F1(jn), F2(jn) and Ecat(jn) 
are assigned to the trays k = 1, …, mut(N) of the offspring individual, successively. If N is less than 
mutI(N) (see Figure 2b), N distinct tray indices jn ∈ {1, …, mut(N)} are chosen and sorted and the 
corresponding variables of the parent individual are assigned to the trays of the offspring. In the latter 
case, some of the offspring variables - those which correspond to the gray trays in Figure 2b) - are not 
assigned after this procedure. These variables are initialized randomly within their bounds. In case of 
the formulation MAMINLP-CF, the next step is the determination of the number of the feeds and of the 
indices of the feed trays of the offspring to assign the values of the discrete variables. Repair 
procedures are applied if the number of feed streams of a feed i is zero and/or if the total amount of 
feed i is not equal to the predefined value. The values of the object variables αtop and αbottom are 
inherited without changes as well as the strategy parameters with the exception of the parameter for 
the number of trays N. 
 

4. Reference algorithms 
Two commercial algorithms were used before with some success to solve the case study at hand1,2. 
These two algorithms serve as a reference for the performance of the new approach. 
 
4.1 OQNLP/CONOPT 
OQNLP is a scatter search based multi-start heuristic that generates different starting points for a local 
NLP solver in the space of all variables. Each candidate point has to pass two different filters (a merit 
filter and a distance filter) to be accepted as a starting point for the local solver CONOPT. OQNLP was 
designed for the global optimization of smooth constrained nonlinear programs (NLPs) but can also 
handle discrete variables. In this case, OQNLP generates starting points in the space of all variables, 
fixes the discrete variables and calls CONOPT for the local search of the continuous sub-problem.  
 
4.2 SBB/CONOPT and SBB/OQNLP/CONOPT 
SBB is based on a combination of the standard branch and bound (B&B) method known from MILP 
problems and a NLP solver. The integrality requirements are totally relaxed in the root node and 
reinforced for one variable after the other and from layer to layer. At each node of the search tree, a 
lower bound on the optimal solution is generated by solving an NLP (integer-relaxed MINLP). This 
bound is only a valid lower bound on the optimal solution if the solution found by the NLP solver is the 
global optimum of the continuous sub-problem represented by the node. This can only be guaranteed 
in case of a convex problem otherwise it could be possible that the global solution is excluded from the 
search by SBB. The solution quality of SBB can be improved1 by solving the continuous sub-problems 
more than once starting the NLP solver from different starting points. Therefore, in addition to the use 
of SBB with CONOPT, SBB is also used with the multi-start algorithm OQNLP in combination with 
CONOPT. Solving the sub-problems more than once in each node leads to a significant increase in 
the computational effort needed for the solution, depending on the number of calls of CONOPT per 
node.  
 

5. Results 
All algorithms were tested on a PC with 3.06GHz and 2GB RAM. Algorithms with stochastic 
influences, i.e. MAMINLP, MAMINLP-CF, OQNLP/CONOPT and SBB/OQNLP/CONOPT, were tested 5 
times and the median performances of these runs are compared with the deterministic runs of 
SBB/CONOPT. For a fair comparison of all algorithms, a parameter tuning was done in preliminary 
test runs. The strategy parameters µ = 5, κ = 5, λ = 10 for MAMINLP and µ = 7, κ = 5, λ = 14 for MAMINLP-

CF lead to the best results. The termination criterion is a limit of 25 generations in case of the MA. 
OQNLP/CONOPT was stopped after 4 hours and the termination criterion for SBB was a limit of 
10,000 nodes. 
  
In both cases, with and without restrictions on the number of feed streams, the column design shown 
in Figure 3a) is the best design known so far. It yields an annual profit of 965,592 €. Without 
restrictions on the number of feed streams, this solution was found by the MA in all test runs. The 
median time needed to find this solution was 50 min and 40 sec. None of the other algorithms was 



M. Urselmann et.al.  

388 
 

able to find this column design in reasonable time. SBB/CONOPT was the fastest algorithm. It 
terminated regularly without reaching the predefined node limit after 7 min and 35 sec. The best 
solution was found after 5 min and 31 sec and has an annual profit of 964,721 € which is slightly 
worse than the best solution found by the MA. The two solutions are structurally different. The regular 
termination of SBB/CONOPT shows that the global solution was excluded from the search because of 
the non-convexity of the sub-problems in the nodes. In the application of SBB/OQNLP/CONOPT, 6 
CONOPT calls per node were necessary to find the best solution known so far within 3 of 5 test runs. 
The median time that is needed to find this solution is 470 min and 23 sec which is approx. 9 times the 
time needed by the MA.  
 

 
Figure 3. a) best column design known so far, b) progress curves of the algorithms (without 
restrictions), c) progress curves of the algorithms (with restrictions on the number of feeds) 

 
In case of the formulation with restrictions on the feeds, the MA found the best solution in 1 of 5 test 
runs. The median profit of the best solution found by the MA was 964,775€. The median time to find 
this solution was 67 min and 20 sec. This solution was also found by SBB/CONOPT after 171 min and 
53 sec. SBB/CONOPT terminated after 6 hours because the given node limit was reached. 
OQNLP/CONOPT could not find any feasible solution within the given time limit. 
SBB/OQNLP/CONOPT with more than one CONOPT call did not terminate within several days. 
 
6. Conclusions & Outlook 
A memetic algorithm that consists of an evolution strategy and a local NLP solver was successfully 
applied to the global design optimization of a reactive distillation column with and without restrictions 
on the number of feeds. In case of the formulation without restrictions, the MA found the best solution 
known so far with a success rate of 100%. The MINLP solver SBB/CONOPT could find a solution with 
approximately the same quality faster, but the global optimum was excluded from the search. Multiple 
starts of the local solver in each node solve this problem, but then the computational effort increases 
by about two orders of magnitude. In case of the formulation with restrictions on the number of feeds, 
the MA was the only algorithm that found the best solution known so far. In future work, the MA will be 
applied to the design optimization of the MTBE column with an optional external reactor. 
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