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Design of chemical processes almost always includes design for separation oper-

ations. Even though some novel separation processes such as membrane separation,

pervaporation, and others, are now being implemented on the commercial scale,

contact phase separation such as distillation, gas absorption, extraction remain the

major separation processes. One of the essential ingredients for optimal design of

such separation operations is knowledge of the required phase equilibrium. Vapor–

liquid and liquid-liquid equilibria depend on the nature of the components, on their

concentration in both phases, and on the temperature and pressure of the system.

When dealing with non-ideal systems as is usually the case, obtaining phase equili-

brium data experimentally requires appreciable experimental skill, experience and

patient.

It is therefore an economic necessity to consider techniques for calculating phase

equilibria for multicomponent mixtures from experimental data. Such techniques

should require only a limited experimental effort and whenever possible should be

based on a theoretical foundation to provide reliability for interpolation and extrapol-

ation with respect to temperature, pressure, and composition to achieve a desired

accuracy[1]. From a high purity separation unit design point of view, as one

approaches infinite dilution regions, the value of activity coefficients become criti-

cally important in deciding the size of a separation unit. In this paper, we present a

methodology that can be adopted in data evaluation where the relevant weight is

given to available experimental data for a particular design objective.
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INTRODUCTION
In most industrial processes, the mixtures encountered usually have the properties of real
mixtures and as such the deviation from ideality is normally described using fugacity (F)
in the gas phase or activity coefficients (g) in the liquid phase. At low pressures, the fuga-
city coefficient is usually obtained using the modified Raoult’s law and is very close to
unity [1, 2, 3, 4, 5]. The activity coefficient (g) is considered to be a function of only temp-
erature and composition. The composition dependence models for excess Gibbs free
energy are usually applied to determine the activity coefficients of liquid mixtures.

When one is designing for high purity separation process, activity coefficient
(especially the limiting activity coefficientsg1) becomes crucial. The limiting activity
coefficient plays an important role and provides useful information for phase behavior
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of dilute solution [5]. Such knowledge has been applied in many practical applications
such as solvent selection, pharmaceutical analysis and environmental modeling. There
are also used in extractive distillation, calculation of solid solubility in supercritical
gases and in calculation of the critical micelle concentrations in surfactants.

The value of g1 can be very large (thousands), especially for non-ideal systems, and
the accuracy of predicting its value which is done using EOS in various mixtures is not
adequate [1]. This means that prediction of vapor composition based solely on pure com-
ponents boiling points can be grossly inaccurate, even for a simple flash drum. Activity
coefficient models parameters are also dependent on temperature and thus extensive
data may be needed to use these models for (multicomponent) mixtures over a range of
temperature.

For liquid mixtures in which one or more of the components cannot be described
easily by equations of state (EOS) in the liquid phase, e.g. mixtures containing alcohols,
organic and inorganic acids, bases and electrolytes; excess Gibbs free energy models are
used. Several modified Gibbs energy models (NRTL, Wilson, Uniquac, etc) or empirical
correlation equations have been presented in open literature which in general considers
molecular distribution in the first shell around the molecule while the rest is considered
as a bulk solution [7]. For engineering application, especially in aqueous systems, an
easy and generalized correlation method to evaluate g1 with better accuracy is still
required.

In this work, we look at how to model phase equilibria of dilute solutions. In par-
ticular we look at how we use the equilibrium data to model a separation process unit
given high purity product specification and what factors are likely to influence the accu-
racy of the results in this very design intensive area.

BACKGROUND TO THE INTERACTION BETWEEN THE DESIGN

EQUATIONS AND VLE MODELS
The product specification in some instances can be very demanding. For instance in the
production of a-olefins for co-monomer applications, it is necessary to produce a very
pure final product. The purity specification of this product can be set as high as 0.9999.
Achieving such high purity can be very demanding in size and operation of the separation
process. A quick analysis of a distillation column designed for producing such high purity
products shows the importance of obtaining accurate phase equilibria data especially near
the pure component nodes and other pinch points. We begin by looking at the design
equations for a distillation column.

DESIGN EQUATIONS
The differential mass balance for a rectifying section of a counter current distillation
column (see Figure 1) is given by the equation [7–10] as:

dxi

dn
¼

V

L
xi � yið Þ þ

D

L
xiD � xið Þ for all i ¼ 1, . . . , m (1)
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Where xi is the mole fraction of component i in the liquid; yi is the mole fraction of
component i in a vapor which is in equilibrium with the liquid of composition xi; xiD is the
mole fraction of component i in the distillate, m is the number of components in the
mixture and D, L and V are distillate, liquid and vapor flow rates in the column respect-
ively. The above equation assumes equimolar overflow and is accurate in difficult separ-
ations such as occurs in high purity separations.

Integrating equation (1) gives:ðxiD

xi,in

dxi

(V=L(xi � yi))þ (D=L(xiD � xi))
for all i ¼ I, . . . , m (2)

Where xi,in is the composition of the liquid entering the rectifying section under con-
sideration which has n equivalent number of stages. It is important to realize that the above
equation must be satisfied for each of the components in the m-component mixture. At the
top of the column, xi! xiD and therefore the second term in the denominator of equation
(2) in the integral tends to zero. Thus as we approach the high purity section in the column,
equation (2) becomes:

L

V

ðxiD

xi,in

dxi

xi � yið Þ
¼

L

V

ðxiD

xi,in

dxi

Si

¼ n for all i ¼ 1, . . . , m (3)

where Si ¼ (xi 2 yi) of component i of the separation vector, and is a function of compo-
sition x, temperature T and Pressure P of the mixture, and is given by:

Si ¼ (xi � yi) ¼ xi �
xigiP

vap
i (T)

fiP
for all i ¼ 1, . . . , m (4)

where gi is the activity coefficient, fi is the fugacity coefficient and P
vap
1 is the vapor

pressure of component i. We can see from equation (3) that it is important that we have

DxiD

Vyi,, n+1 Lxi,n

Figure 1. Rectifying section of a distillation column
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an accurate model of the separation vector, and that this becomes more and more important
as the value of Si becomes smaller which occurs as the column profile approaches the high
purity region where xi ! yi. We will now consider the various approaches that are cur-
rently used and their shortcomings. We will do this by considering an example, namely
the separation of ethanol from water, at moderate pressures where f! 1. For this
purpose illustrating data analysis method discussed above, experimental data obtained
from Dachema chemistry data series [4] (Vapor liquid data collection) was analyzed.

ACTIVITY COEFFICIENTS AT INFINTE DILUTION
At low pressure, for the dilute component, the separation vector for the dilute component
becomes

Si ¼ xi � yi ¼ xi 1�
g1

i P
vap
i

P

� �
(5)

where i is the dilute component in a binary mixture and gi
1 is the activity coefficient at

infinite dilution. The values of the activity coefficient can be plotted as a function of com-
position at various total pressures for the water-ethanol system (Figure 2).
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Figure 2. Activity coefficient of ethanol vs. liquid mole fraction of ethanol in a water-ethanol

mixture at different pressures (Data obtained from J. Gmehling, U. Onken Vapor liquid data

collection Vol. 1, part 1 1977)4
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From Figure 2, we can see that as the ethanol concentration becomes dilute, the infi-
nite dilution activity coefficient (gi

1) is a strong function of composition and pressure (and
hence is sensitive to temperature). It will therefore not be particularly accurate to use
equation (5) in the definition of the separation vector to estimate the column size using
equation (3).

Henry’s Law Model
When dealing with such low contaminants concentrations (ppm levels), then Henry law is
a convenient way of estimating a solute’s concentration. This implies that, to obtain the
number of theoretical plates required in a rectifying column to shift a high purity P0 to
an even higher purity Pn, for instance, it is important to analyze data in the very top
right end of the y–x diagram [3]. In this region (dilute in x2), the equilibrium curve is
usually liberalized using the limiting slope (Henrys constant) and the slope subsequently
used in estimating the theoretical plates required.

Henry law states that the solubility of the solute in a solvent is directly proportional
mole fraction of the solute in the gas phase [5]. In general the Henry’s law model becomes:

yi ¼ Hixi where i is the dilute component (6)

Thus if we plot the ratio (yi=xi) versus xi for the ethanol- water example, we would
expect that in the dilute region the curve becomes a flat line. We see from Figure 3 that this
does not in face occur for ethanol in water, where ethanol is the dilute species.
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Figure 3. Henry’s law constant for ethanol vs. mole fraction of ethanol for the ethanol-water

system. (Data from J. Gmehling, U. Onken Vapor liquid data collection Vol. 1, part 1 1977 )
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From this graph, it is observed that for this system, the Henrys Law coefficient for
ethanol varies considerably with composition and temperature and therefore a Henrys
law assumption will not give a good estimate of the composition in this region. Again
this model will not give very accurate results for the value of the separation vector
and hence will not be adequate for determining the size of equipment using the design
equation (3).

We might consider Henrys law a first order model in that the mole fraction in the
vapor phase is proportional to that in the liquid phase. We will now look at a higher
order approximation that is proposed by the authors.

A SECOND ORDER APPROXIMATION: A CONSTANT JACOBIAN OF

THE SEPARATION VECTOR
The separation vector in equation (4) is a function of composition only. Differentiating
equation (4) with respect in composition (assuming fi ¼ 1) we obtain:

dSi

dxi

¼ 1�
giP

vap
i

P
�

x1

P

dgiP
vap
i

dxi

� �
(7)

However, as opposed to other approaches discussed above, we now consider the

component which is nearly pure. Then as xi! 0, we can see that 1�
giP

vap
i

P
! 0, and

P
vap
i ffi P. Therefore equation (7) can be written as:

dSi

dxi

����
xi!1

!�
1

P

d

dxi

yiP

xi

� �
¼ �

d

dxi

yi

xi

� �����
xi!1

(8)

This is a quadratic approximation as opposed to the Henrys law formulation, which
is a first order approximation, and hence it might be expected to hold more generally and
hence apply to more systems over a wider range of concentrations. Equation (8) predicts
that if we plot (yi=xi) versus xi for the concentrated component, the curve would asymptote
to a straight line as xi! 1. The slope of this line is equal to the value of the Jacobian of the
separation vector in a binary system. This term is also the same as the one that appears in
the Jacobian of the separation vector in multicomponent systems for the component that is
highly concentrated. In our opinion, this approach can be extended to multicomponent
systems but because of the available space this can not be fully demonstrated in this paper.

We have plotted (yi=xi) versus xi for both water and ethanol and this shown in
Figures 4 and 5. It was interesting to note that curves for very different total pressures
(0.1–6 atm), lie almost on top of each other over the whole composition range. At the azeo-
tropes the ratio, yi=xi ¼ 1, as expected and shown in Figures 4 and 5. We also see that the
curves do in fact approach a limiting slope for both the concentrated ethanol and concen-
trated water cases. Furthermore the curves for different pressures, even though the temp-
eratures are very different all approach the same limiting slope.
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Figure 4. Plot of the ratio of mole fraction of water in the vapor to liquid phase vs. Mole fraction

of water (Data from J. Gmehling, U. Onken Vapor liquid data collection Vol. 1, part 1 1977 )
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Figure 5. Plot of the ratio of mole fraction of ethanol in the vapour to liquid phase versus

mole fraction of ethanol; (Data from J. Gmehling, U. Onken vapor liquid data collection

Vol. 1, part 1 1977)
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USE OF THE SECOND ORDER APPROXIMATION IN

THE DESIGN EQUATION
We can rewrite Equation (3) as follows:

n ¼
V

L

ðxiD

xi,in

dxi

Si

¼
V

L

ðsiD

Si,in

dxi

dSi

� �
dSi

Si

� �
(9)

When one is designing for high purity (x1 ! 1), and letting t ¼ V=L, equation (9)
becomes

n ffi t �
1

d
dxi

yi

xi

� ����
xi!1

ln
Si,D

Si,n

 !0
B@

1
CA (10)

where Si,in and Si,D are the separation vectors at initial and final composition stage in a
column section respectively. The value of Si can be calculated from:

Si ¼ xi(1� xi)
d

dxi

yi

xi

� �����
xi!1

(11)

CONCLUSIONS
Achievement of high purity via distillation is extremely demanding on equipment size. To
ensure reliable design calculations, engineers normally use conservative estimates which
may be quite expensive from an economic and environmental point of view. Distillation
column design, for example, relies heavily on the parameters used in the design models. It
is shown from the simple analysis done in this work that the separation vector (Si) should
be determined accurately as it relates to the size of the equipment. To achieve this, a good
and dependable method of evaluating parameters is necessary especially when one is
designing for high purity separations. Accordingly, the method(s) adopted must provide
the correct asymptotes in the limits of compositions, and should also accurately predict
the location of azeotrope. One has also to remember that even when we have experimental
information available, there is always some risk when predictive methods are used, as it is
possible that they do not provide enough accuracy for the process design parameters in the
regions of interest.

It is also our suggestion that multicomponent systems can easily be treated as
binaries. This suggestion is based on the understanding that as one approaches the
limits of purity, the solute molecules are at infinitesimal concentration and each molecule
is completely surrounded by the solvent molecules and vice versa. In such a limiting case,
all solute molecule (different types) interactions with the solvent can be considered as
parallel pairs of binaries. This is because the interaction of different solute molecules at
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this low concentration is so small and can be ignored. The interaction parameters can
therefore be calculated for each binary sequentially until the entire multi component
system is described. It is from this basis that we propose that the method can easily be
adopted for multicomponent systems.

REFERENCES
1. Prausnitz J. M. Computer calculations for multicomponent Vapor-Liquid and

Liquid-Liquid Equilibria 1980 by Prentice-Hall

2. R. C. Reid, J. M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, 4th edn.,

McGraw-Hill Book, New York, 1987

3. J. D. Raal and A. L. Muhlbaurer; Phase Equilibria- measurements and computation,

Taylor & Fraccis London (1998) p 302–309

4. J. Gmehling, U. Onken Vapor liquid data collection Vol. 1, part 1 1977

5. M. Mullins, T. Rogers, A. Loll; Fluid Phase Equilibria 150–151 (1998) 245–253

6. Kojima, K., H. M. Moon and K. Ochi Fluid Phase Equilibria (1990) 56: 269–284

7. M. Tapp, S. Holland, D. Hildebrandt, D. Glasser; Ind. Eng. Chem. Res. 2004, 43, 364–374

8. Tshepo. S. M., M. Tapp, D. Hildebrandt, D. Glasser; Ind. Eng. Chem. Res. 2005, 44,

7511–7519

9. S. T. Holland, M. Tapp, D. Hildebrandt, D. Glasser, B. Hausberger; Comp. and Chem. Eng.

29, 2004, 181–9

10. S. T. Holland, M. Tapp, D. Hildebrandt, D. Glasser; Ind. Eng. Chem. Res. 2004, 43,

3590–3603

SYMPOSIUM SERIES NO. 152 # 2006 IChemE

936


	1 Introduction
	2 Background to the Interaction Between the Design Equations and VLE Models
	FG01
	FG02
	FG03
	3 A Second Order approximation: A Constant Jacobian of the™separation Vector
	FG04
	FG05
	4 Use of the Second Order approximation in the™Design™equation
	5 Conclusions
	REFERENCES

